

Odoo 15 Development
Essentials
Fifth Edition

Enhance your Odoo development skills to create
powerful business applications

Daniel Reis

BIRMINGHAM—MUMBAI

Odoo 15 Development Essentials
Fifth Edition
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Alok Dhuri
Publishing Product Manager: Harshal Gundetty
Senior Editor: Ruvika Rao
Content Development Editor: Nithya Sadanandan
Technical Editor: Pradeep Sahu
Copy Editor: Safis Editing
Project Coordinator: Manisha Singh
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Ponraj Dhandapani
Marketing Coordinator: Teny Thomas

First published: November 2016
Fifth edition: February 2022
Production reference: 1030122

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80020-006-7
www.packt.com

http://www.packt.com

Thanks to Maria José Reis for all the companionship and support. This and
the previous books are a joint achievement.

– Daniel Reis

Foreword
It is an easy time to be an Odoo developer…and that wasn't always the case. In 2010,
when I first discovered OpenERP, the documentation was the code—and that was it.
Knowledge was widely dispersed and shallow, and the Odoo community was just a
mirage. Everything we all learned was through hard-won victories and transmitted as
tribal lore between pioneers.

Fortunately, a few people started writing down these lessons, making it easier for all that
followed. I must acknowledge the work that Fabien himself did in fostering this effort.
Daniel, Holger, Alex, and others built on this foundation, and now, we all benefit from
their largely unrecognized efforts.

The Odoo community has rocketed forward on a trajectory that all of us hoped for, but
none of us were sure how it would be done. Out of many free or open source software
projects, Odoo emerged as the most successful to tackle the enterprise resource planning
market, solving business problems with freedom and flexibility.

I am consistently amazed at the creativity and productivity that Odoo developers
demonstrate. Odoo attracts an especially curious, inspired sort of developer, and I think
this book will be a great help to people at all levels.

Finally, there is a question—how do I use Odoo to solve my business goals? That is where
the art is. This book does a good job of explaining how to build an application, but the
trick is in how to build the right application. Development effort alone isn't enough to
solve complex supply chain, manufacturing, or sales challenges. Thorough business
analysis and optimization are key to a successful project—and one of the people that I
think demonstrates this best is Daniel Reis. This book gives a few hints here and there that
business process optimization is as important as good code.

Here's to Fabien, Odoo S.A., and to the community—may we continue to work together as
friends and colleagues for decades to come.

Greg Mader

Founder and president of Open Source Integrators

Contributors

About the author
Daniel Reis has a degree in applied mathematics and an MBA. He has had a long career
in the IT industry, mostly as a consultant implementing business applications in a variety
of sectors.

He has been working with Odoo (OpenERP at the time) since 2010 and is an active
contributor to the Odoo Community Association (OCA), where he also serves as a
board member.

He is the managing director of Open Source Integrators, a leading open source and Odoo
consultancy firm.

About the reviewers
Bhavesh Odedra has been an innovative software developer since 2012 working on the
open source ERP software development lifecycle – from concept through delivery of
next-generation modules and customizable solutions. He started his journey with Odoo
(formerly OpenERP) in 2012. He has been an active contributor to the Stack Overflow
developer community and the Odoo Community Association since 2013 and is currently
a delegate member of the Odoo Community Association. Currently, he works at Open
Source Integrators in the United States as an implementation engineer.

Ashish Singh Bhatia is a reader and learner at his core. He has more than 13 years of rich
experience in different IT sectors, encompassing training, development, and management.
He has worked in many domains, such as software development, ERP, banking, and
training. He is passionate about Python and Java and has recently been exploring R. He is
mostly involved in web and mobile development in various capacities. He likes to explore
new technologies and share his views and thoughts through various online media and
magazines. He believes in sharing his experience with the new generation and also takes
part in training and teaching. Currently, he is working with Odoo's India office.

Table of Contents
Preface

Section 1: Introduction to Odoo
Development

1
Quick Start Using the Developer Mode

Technical requirements 4
Introducing the to-do list project 4
Understanding basic
Odoo concepts 6
About Odoo and the Odoo community 6
Odoo product versions 7
The Odoo architecture 8

Using an Odoo SaaS trial
database 10
Installing Odoo in your
workstation 11
Installing on Windows using the
all-in-one installer 12
Installing on Linux using a
pre-packaged installer 12
Installing Odoo using Docker containers 12

Enabling the developer tools 15
Enabling the developer mode 16
Using the developer mode with assets 18
About Odoo Studio 18

Adding a custom field to a model 18
Adding a field to a model 19
Adding a field to a form view 21
Understanding view types 24

Creating a new model 26
Creating menu items
and actions 30
Configuring access control
security 32
Security groups 33
Security access control lists 34
Assigning security groups to users 34
Security record rules 36
Understanding the superuser account 38

Creating views 38
Creating a list view 39
Creating a form view 40
Creating search views 41
Enabling default filters on views 42

Summary 42

viii Table of Contents

2
Preparing the Development Environment

Technical requirements 44
Setting up a host for the
Odoo server 44
Installing the Windows Subsystem
for Linux 45

Installing Odoo from source 46
Installing the PostgreSQL database 46
Installing the Odoo system
dependencies 47
Installing Odoo from source 48
Running Odoo 51
Creating a new database from the
web client 52
Creating a new database from the
command line 54

Managing Odoo databases 55

Configuring the Odoo server
options 57
Odoo server configuration files 57
Changing the listening port 58
Filtering the list of accessible databases 59
Managing server log messages 60

Finding and installing
additional modules 63
Finding community modules 63
Configuring the add-ons path 64

Using the server
development options 64
Odoo commands quick
reference 65
Summary 66

3
Your First Odoo Application

Technical requirements 68
Overview of the library project 68
Step 1 – Creating a new
addon module 69
Preparing the addons path 70
Creating a module directory 72
Creating a manifest file 74
Setting the module category 76
Choosing a license 79
Adding a description 80
Adding an icon 81
Installing a new module 81
Upgrading modules 82

Step 2 – Creating a new
application 84
Adding a top menu item 84
Adding security groups 85

Step 3 – Adding automated tests 88
Adding test cases 90
Running tests 91
Testing business logic 91
Testing access security 92

Step 4 – Implementing the
model layer 92
Creating a data model 93

Table of Contents ix

Step 5 – Setting up access
security 97
Adding access control security 98
Row-level access rules 100

Step 6 – Implementing the
backend view layer 102
Adding menu items 102
Creating a form view 104
Business document form views 106
Adding action buttons 106
Using groups to organize forms 107
The complete form view 108

Adding list and search views 109

Step 7 – Implementing the
business logic layer 110
Adding business logic 110

Step 8 – Implementing the
website UI 112
Adding the endpoint controller 113
Adding a QWeb template 114

Quick reference 116
Access security 116

Summary 117

4
Extending Modules

Technical requirements 120
Learning project – extending
the Library app 120
Books 121
Members 121

Adding a new field to an
existing model 122
Adding new fields with the in-place
model extension 122
Adding a field to the Form view 123

Extending models using classic
in-place extension 125
Incrementally modifying existing fields 126
Extending Python methods to add
features to the business logic 127

More model inheritance
mechanisms 129
Embedding models using
delegation inheritance 129

Copying models with prototype
inheritance 133
Reusing model features using mixin
classes 134
Adding message chatter and activities
to a model 135

Extending views and data 138
Extending views 138
Moving XML nodes to a
different location 139
Using XPath to select
XML extension points 140
Modifying existing data 140

Extending web pages 142
Extending the web controllers 142
Extending QWeb templates 144

Summary 146
Further reading 147

x Table of Contents

Section 2: Models

5
Importing, Exporting, and Module Data

Technical requirements 152
Understanding the external
identifier concept 152
How external identifiers work 152
Finding external identifiers 155

Exporting and importing CSV
data files 156
Exporting data 156
Importing data 159
Related records in CSV data files 160

Adding module data 162
Demonstration data 163

Using XML data files 164
The noupdate data attribute 165
Defining records in XML 167
Shortcuts for frequently used models 170
Using other actions in XML data files 170

Summary 172
Further reading 172

6
Models – Structuring the Application Data

Technical requirements 174
Learning project – improving
the Library app 174
Creating models 175
Model attributes 175
Models and Python classes 177
Transient and abstract models 178
Inspecting existing models 178

Creating fields 180
Basic field types 180
Common field attributes 184
Setting default values 186
Automatic field names 187
Reserved field names 187

Relationships between models 188
Many-to-one relationships 189

One-to-many inverse relationships 191
Many-to-many relationships 192
Hierarchical relationships 194
Flexible relationships using Reference
fields 196

Computed fields 197
Searching and writing on computed
fields 199
Related fields 201

Model constraints 202
SQL model constraints 202
Python model constraints 203

Overview of the Odoo base
models 204
Summary 205
Further reading 206

Table of Contents xi

Section 3: Business Logic

7
Recordsets – Working with Model Data

Technical requirements 210
Using the shell command 210
The execution environment 212
Environment attributes 212
The environment context 213
Modifying the recordset execution
environment and context 214

Querying data with recordsets
and domains 215
Creating recordsets 216
Domain expressions 217
Grouping by fields and aggregate data 222

Accessing data in recordsets 223
Accessing individual record data 223
Accessing relational fields 224
Accessing date and time values 225

Writing to records 226
Using object-style value assignments 226
Using the write() method 228

Creating and deleting records 230

Working with date and time
fields 231
Adding and subtracting time 232
Converting date and time objects to
text representations 233
Converting text-represented dates and
times 234

Working with recordsets 236
Recordset operations 236
The composition of a recordset 237
Recordset accumulation 238
Recordset comparisons 240

Transactions and low-level SQL 240
Controlling database transactions 241
Executing raw SQL 241

Summary 243
Further reading 244

8
Business Logic – Supporting Business Processes

Technical requirements 246
Learning project – the book
checkout module 247
Preparing the data model 247
Creating the module 248

Exploring ways to trigger
business logic 251

Understanding ORM method
decorators for recordsets 252
Decorators for computed fields and
validation methods 253
Decorators that affect the
self recordset 253

Exploring useful data model
patterns 254

xii Table of Contents

Using header and lines models 254
Using stages and states for
document-centered workflows 257
Adding stage workflow support to
models 262
Methods to support the user interface 263

Using the ORM built-in
methods 264
Methods for writing model data 264
Methods for data import and export 269

Adding onchange user interface
logic 269
Classic onchange methods 270
The new onchange, with computed
writable fields 272

The message and activity
features 273
Adding message and activity features 274
Message and activity fields
and models 276
Message subtypes 276
Posting messages 278
Adding followers 278

Creating a wizard 279
The wizard model 279
The wizard's access security 280
The wizard form 281
The wizard business logic 284

Raising exceptions 286
Writing unit tests 288
Adding unit tests 288
Running tests 290
Setting up tests 290
Writing test cases 291
Testing exceptions 293

Using log messages 294
Learning about the available
developer tools 296
Server development options 296
Debugging 297
Inspecting and killing
running processes 302

Summary 303
Further reading 303

9
External API – Integrating with Other Systems

Technical requirements 306
Introducing the learning
project – a client app to
catalog books 306
Setting up Python on the client
machine 307
Exploring the Odoo
external API 308
Using XML-RPC to connect to the
Odoo external API 308

Using XML-RPC to run server methods 310
Using the search and read
API methods 311
Calling other API methods 312

Implementing the client app
XML-RPC interface 314
Implementing the client app
user interface 316
Using the OdooRPC library 319

Table of Contents xiii

Summary 322 Further reading 322

Section 4: Views

10
Backend Views – Designing the User Interface

Technical requirements 326
Adding menu items 326
Understanding window actions 328
Adding options to the Action
context menu 330
Exploring the form view
structure 332
Using business document views 333
Adding a header section 334
Designing the document sheet 338
Adding a header title 339
Organizing the form content using
groups 340
Adding tabbed notebooks 342

Using fields 343
Modifying field labels 344
Choosing field widgets 345
Relation fields 346

Using buttons 348
Using smart buttons 349

Adding dynamic view elements 352
Using onchange events 352
Using dynamic attributes 353

Exploring list views 354
Adding a list view header section 354
Using line decoration 355
Other list view attributes 356
Adding column totals 357

Exploring search views 357
Understanding the <field> element 358
Understanding the <filter> element 359
Adding a search panel 361

Understanding the other
available view types 362
Exploring the activity view 364
Exploring the calendar view 365
Exploring the pivot view 366
Exploring the graph view 367

Summary 368
Further reading 369

11
Kanban Views and Client-Side QWeb

Technical requirements 372
Introducing kanban boards 372
Supporting kanban boards in Odoo 373
Understanding kanban states 375

Designing kanban views 377
Creating a minimal viable kanban view 378
Presenting kanban board columns 379

xiv Table of Contents

Understanding kanban view attributes
and elements 380
Adding a progress bar to
group columns 381

Designing kanban cards 383
Organizing the kanban card layout 383
Adding a title and other content fields 385
Adding the drop-down options menu 386
Adding a kanban card color indicator 388
Adding priority and activity widgets 389
Adding kanban state and user avatar
widgets 390
Using actions in kanban view elements 391

Exploring the QWeb template
language 391
Understanding the QWeb JavaScript
evaluation context 392
Using t-out to render values 394

Using t-set to assign values
to variables 394
Using t-attf- for string substitution of
dynamic attributes 395
Using t-att- for expressions calculated
by dynamic attributes 396
Using t-foreach for loops 396
Using t-if to apply conditions 398
Using t-call to call and reuse templates 399
Using dictionaries and lists to
dynamically set attributes 401

Extending kanban views 402
Adding CSS and JavaScript
assets 404
Adding assets before Odoo 15 405

Summary 405
Further reading 406

12
Creating Printable PDF Reports with Server-Side QWeb

Technical requirements 408
Installing wkhtmltopdf 408
Creating business reports 410
Adding the report action 410
Using a QWeb report template for
per-record documents 412
Using a QWeb report template for
record listings 413
Choosing a report layout 414
Setting a paper format 415

Designing report content 417
Understanding the report
rendering context 417

Adding the report content 418
Using field widgets 420
Rendering images 421
Calculating totals 422
Calculating running totals 423
Enabling language translation
in reports 423

Creating custom reports 425
Preparing custom report data 427
Adding the report template 428

Further reading 431

Table of Contents xv

13
Creating Web and Portal Frontend Features

Technical requirements 434
Introducing the library portal
learning project 434
Creating a frontend web page 435
Adding a web controller 436
Adding a QWeb template 438
Adding CSS and JavaScript assets 440

Understanding web controllers 442
Declaring routes 442
Extracting argument values from the
route string 442
Using the request object 443

Using the response object 444

Adding portal features 445
Configuring access security for the
portal users 446
Adding a portal document type to the
main list 449
Adding a portal document list page 450
Adding a portal document detail page 454
Adding a portal breadcrumb 457

Summary 459
Further reading 459

Section 5: Deployment and Maintenance

14
Understanding Odoo Built-In Models

Technical requirements 464
Understanding the contacts
data model 464
Understanding the users and
companies data model 466
Understanding the security-
related information repository 467
Understanding the database
structure models 468

Understanding the UI-related
information repository 470
Understanding the
configuration properties and
company parameters 472
Understanding messaging data
models 473
Summary 475

xvi Table of Contents

15
Deploying and Maintaining Production Instances

Technical requirements 478
Preparing the host system 479
Installing the system dependencies 479
Preparing a dedicated system user 480

Installing Odoo from source
code 481
Downloading the Odoo source code 482
Installing the Python dependencies 483

Configuring Odoo 484
Setting up the configuration file 484
Understanding multiprocessing workers 489

Setting up Odoo as a system
service 489
Creating a systemd service 490

Checking the Odoo service from the
command line 491

Setting up an Nginx reverse
proxy 492
Configuring and enforcing
HTTPS 496
Creating a self-signed SSL certificate 496
Configuring HTTPS access on Nginx 496
Caching static content 499

Maintaining the Odoo service
and modules 500
Creating a staging environment 500
Updating Odoo source code 502

Summary 503
Further reading 504

Index

Other Books You May Enjoy

Preface
Odoo is a full-featured open source platform to build applications. Based on this core
framework, a suite of integrated applications was built, covering all business areas from
CRM and sales to inventory and accounting.

Beyond these out-of-the-box features, Odoo is an application development framework built
with extensibility in mind. Extensions and modifications can be implemented as modules,
to be applied over the module with the feature being changed. This avoids editing the
original feature code and provides clean and easy-to-control customized applications.

This capability to combine several modules into feature-rich applications, along with the
open source nature of Odoo, are important factors that explain the community that grew
around Odoo. In fact, there are thousands of community modules available for Odoo,
covering virtually every topic.

Odoo 15 Development Essentials provides a step-by-step guide to Odoo development,
allowing you to quickly climb the learning curve and become productive on the Odoo
application platform. At the same time, it provides good reference materials, to be kept
nearby every time you are working with Odoo.

Who this book is for
This book was written keeping in mind developers with minimal programming
knowledge but a strong will to learn. The Odoo server is implemented in Python, and
basic knowledge of Python programming is expected before getting started with the book.
The main platform used to run Odoo is an Ubuntu/Debian system, but little previous
knowledge on it is assumed. The code examples are kept simple and clear, and they are
accompanied by appropriate explanations to help build up knowledge on them.

Teachers, trainers, and Odoo development managers will also find the book useful for
helping their students or trainees to learn Odoo development skills.

xviii Preface

Experienced developers, already familiar with Odoo, should also be able to benefit from
this book. Not only does it consolidate their knowledge, but it also provides an easy way
to get up to date with all the details that changed in the last Odoo versions, which are
highlighted whenever the changes are significant.

Finally, this book should provide a solid reference to be used daily, both by newcomers
and experienced developers. The documentation of the relevant differences between the
several Odoo versions should also be a good resource for any developer working with
different Odoo versions at the same time or porting modules to other versions.

What this book covers
Chapter 1, Quick Start Using the Developer Mode, visually introduces the Odoo
development concepts, creating an Odoo application directly from the user interface – a
simple to-do tracking application. Instructions are given to get Odoo working on the work
machine, but an existing Odoo installation, or an Odoo.com instance, can be used, so no
local setup is required.

Chapter 2, Preparing the Development Environment, explains how to install Odoo from
source code, and how to set up the development environment to be used throughout the
book. We choose to install Odoo in an Ubuntu environment, and under Windows 10 the
Windows Subsystem for Linux (WSL) can be used to achieve this.

Chapter 3, Your First Odoo Application, provides a step-by-step guide through the creation
of our first Odoo module, a book catalog for a library app. While the example is kept
simple, it covers all the different layers and components that can be involved in an Odoo
application: models, business logic, backend views, and web frontend views.

Chapter 4, Extending Modules, explains the available inheritance mechanisms and how to
use them to create extension modules, adding or modifying features from other existing
add-on modules.

Chapter 5, Importing, Exporting, and Module Data, addresses the usage of data files in
Odoo, and their role in modules to load data and configurations to the database. It covers
the XML and CSV data file formats, the external identifier concept, how to use data files in
modules, and data import/export operations.

Chapter 6, Models – Structuring the Application Data, discusses the model layer in detail,
introducing the framework's Object-Relational Mapping (ORM), the different types of
models available, and the field types, including relational and computed fields.

Chapter 7, Recordsets – Working with Model Data, introduces ORM concepts and features,
how to query and browse data from models, how to manipulate recordsets, and how to
write changes to model data.

Preface xix

Chapter 8, Business Logic – Supporting Business Processes, explores programming business
logic on the server side to manipulate data and implement specific business rules. It also
explains how to use wizards for more sophisticated user interaction. The built-in social
features – messages, chatter, followers, and channels – are addressed, as well as testing and
debugging techniques.

Chapter 9, External API – Integrating with Other Systems, shows how to implement Odoo
external applications by implementing a command-line client that interacts with our
Odoo server. There are several alternative client programming libraries available, which
are introduced and used to implement our showcase client utility.

Chapter 10, Backend Views – Designing the User Interface, covers the web client's View
layer, explaining the several types of views in detail and all the elements that can be used
to create dynamic and intuitive user interfaces.

Chapter 11, Kanban Views and Client-Side QWeb, continues working with the web client,
but introduces Kanban views and explains the QWeb templates used to design the Kanban
board elements.

Chapter 12, Creating Printable PDF Reports with Server-Side QWeb, discusses using the
QWeb-based report engine and everything needed to generate printer-friendly PDF reports.

Chapter 13, Creating Web and Portal Frontend Features, introduces Odoo website
development, including web controller implementations and using QWeb templates to
build frontend web pages.

Chapter 14, Understanding Odoo Built-In Models, provides an overview of the models
provided by the Odoo base module, such as Partners, Users, and the Models and Fields
definitions.

Chapter 15, Deploying and Maintaining Production Instances, shows how to prepare a
server for production prime time, explaining what configuration should be taken care of
and how to configure an nginx reverse proxy for improved security and scalability.

To get the most out of this book
Other than being familiar with programming, no particular knowledge is expected to be
able to take advantage of this book.

Odoo is built using the Python programming language, so it is a good idea to have solid
knowledge of it. We also chose to run Odoo on an Ubuntu host and will do some work on
the command line, so it will help to be familiar with it.

To get the most out of this book, we recommend that you find complementary readings
on the Python programming language, the Ubuntu/Debian Linux operating system, and
the PostgreSQL database.

xx Preface

While we will run Odoo on an Ubuntu host (a popular cloud hosting option), we will
provide guidance on how to set up our development environment on a Windows system
using the WSL, available in Windows 10. Of course, working from an Ubuntu/Debian
native system is also a good choice.

All the required software is freely available, and the instructions on where to find it will be
given in the book's initial chapters.

Note
If you are using the digital version of this book, we advise you to type the
code yourself or access the code from the book's GitHub repository (a link is
provided in the next section). Doing so will help you avoid any potential errors
related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Odoo-15-Development-Essentials. If
there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800200067_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

https://github.com/PacktPublishing/Odoo-15-Development-Essentials
https://github.com/PacktPublishing/Odoo-15-Development-Essentials
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800200067_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800200067_ColorImages.pdf

Preface xxi

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "At the top of the list, we can see the library_app.action_
library_book complete identifier."

A block of code is set as follows:

"id","name"

"__export__.res_partner_43_f82d2ecc","Alexandre Fayolle"

"__export__.res_partner_41_30a5bc3c","Daniel Reis"

"__export__.res_partner_44_6be5a130","Holger Brunn"

"__export__.res_partner_42_38b48275","Packt Publishing"

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

"id","name","date_published","publisher_id/id","author_ids/id"
library_book_ode11,"Odoo Development Essentials 11","2018-03-
01",res_partner_packt,res_partner_daniel
library_book_odc11,"Odoo 11 Development Cookbook","2018-01-
01",res_partner_packt,"res_partner_alexandre,res_partner_
holger"

Any command-line input or output is written as follows:

$ sudo apt install git python3-dev python3-pip \

python3-wheel python3-venv -y

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Bank data
can be browsed at the Contacts | Configuration | Bank Accounts | Banks menu option."

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us
at customercare@packtpub.com and mention the book title in the subject of
your message.

http://customercare@packtpub.com

xxii Preface

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if you
would report this to us. Please visit www.packtpub.com/support/errata and fill
in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Share Your Thoughts
Once you've read Odoo 15 Development Essentials, we'd love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book
and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://www.packtpub.com/support/errata
http://copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1800200064

The first part helps in setting up the development environment and provides an overview
of all the key components used to build Odoo applications, such as models and views.
These will then be detailed in the rest of the book, organized following the Model-View-
Controller pattern.

In this section, the following chapters are included:

• Chapter 1, Quick Start Using the Developer Mode

• Chapter 2, Preparing the Development Environment

• Chapter 3, Your First Odoo Application

• Chapter 4, Extending Modules

Section 1:
Introduction to

Odoo Development

1
Quick Start Using

the Developer Mode
Odoo provides a rapid application development framework that is particularly suited to
building applications for business. Business applications usually focus on keeping business
records and workflows. Odoo makes it easy to build this type of application and provides
rich components to create compelling user interfaces (UIs), such as a kanban view, as
well as calendar and graph views.

In this chapter, we will jump straight into the action and start coding by exploring
the Odoo internals directly from the web UI – even before we have to set up a local
development environment. This will give you a hands-on understanding of the
components involved in an Odoo app. At the same time, you will learn some essential
tools for inspecting existing apps and building quick prototypes.

The topics discussed in this chapter are as follows:

• Introducing the to-do list project

• Understanding basic Odoo concepts

• Using an Odoo SaaS trial database

• Installing Odoo in your workstation

• Enabling the developer tools

4 Quick Start Using the Developer Mode

• Adding a custom field to a model

• Creating a new model

• Creating menu items and actions

• Configuring access control security

• Creating views

By the end of this chapter, you will be familiar with the main components for Odoo
customization and development.

Technical requirements
The minimum requirement for this chapter is to have a modern web browser, such as
Mozilla Firefox or Google Chrome. With a browser and an internet connection, you can
follow the chapter using an Odoo SaaS trial database, and no local installation is needed.

Of course, you can use a locally installed instance of Odoo if you want. In this case, you
can follow the instructions in the Installing Odoo in your workstation section, which
describes prepackaged installations for Windows, Ubuntu, and Red Hat Enterprise
Linux (RHEL). Alternatively, you can use Docker.

Introducing the to-do list project
Throughout this chapter, we will use an example project to illustrate the concepts being
presented. The project will be to build a simple to-do list Odoo app.

We want the app to allow us to add new to-do items to a list and then mark them as
completed. For example, we want to be able to add a Buy eggs to-do item to the list and
then check an Is done? checkbox once the task is completed. Additionally, the to-do items
should be private to each user – in other words, the current user should be able to access
only their own to-do items. To make the project more interesting, we will introduce an
additional complication – our to-do items should be able to include a list of the people
involved in the task: the work team.

It is useful to think about our application by considering the tiers involved:

• Data tier: This tier is implemented through models.

• Business Logic tier: This tier is implemented through Python automation code.

• Presentation tier: This tier is implemented through views.

Introducing the to-do list project 5

For the Data tier, we will create a To-do Item model. For the work team feature, we will
make use of the built-in Contact model (also known as the Partner model). And we must
not forget to configure the access control security for our new model.

The Business Logic tier will allow the basic create, read, update, and delete (CRUD)
operations handled by the framework. In this case, we don't have additional automation
requirements to support. We need to use Python code in developer modules to access the
full power of the framework. We won't be doing that for developer modules yet, but the
Technical menu provides access to the Automated Actions tool to implement business
logic from the UI. We will look at an example of how to use this tool later in the chapter.

Finally, for the Presentation tier, we will add the menu option for our application and the
views for the To-do Item model. The essential views for a business application are the list
view (to browse the existing records) and the form view (to zoom in to a record and see
all of its details). For user convenience, we can also add predefined filters to the list view's
search box. The search box options are configured through a search view component.

We will follow these steps to build the to-do list app:

1. Create the new model for the to-do items.
2. Create the menu items to make them available to users.
3. Configure the access control security.
4. Create the list and form views for the to-do items.

The new To-do Item model should have these fields:

• A Description character field

• An Is Done? flag, which is a Boolean field

Our specification for the app includes a work team feature: that is, the ability to select a
list of people that will be working on the task. So, we need a model to represent people.
Odoo includes the Contact model (with the technical name of res.partner) to use for
individual people, companies, and addresses.

The To-do Item model should include a work team field, which will allow us to select a list
of people. We want to limit the people that can be selected to be part of work teams. For
this, we will modify the Contact model to add a field for this: a Is Work Team? flag.
Only people with this flag enabled can be added to a work team.

6 Quick Start Using the Developer Mode

For the work team feature, we need to add a field to the Contact model and the form view.

Before we go into the actual implementation, we will first discuss a few basic concepts
relating to the Odoo framework, and then learn how to prepare an environment to
work with.

Understanding basic Odoo concepts
There are a few concepts that might not be obvious to people first learning about Odoo.
Let's try to understand these before moving on.

About Odoo and the Odoo community
Odoo is a software product published by Odoo SA, a software company based in Belgium
founded by Fabien Pinckaers. The Odoo software is company-driven, meaning that its
roadmap and development are both tightly controlled by Odoo SA. However, it still
follows open source principles, and community contributions to the code are welcome.

The Odoo software follows the open core business model, meaning that some parts of the
software are open source and some parts are proprietary. As a result of this model, Odoo
publishes two editions:

The Community Edition (CE) is publicly available, open source, and licensed under LGPL.

The Enterprise Edition (EE) is available only to official partners and customers and has a
proprietary license requiring non-disclosure of the code.

The Odoo EE works as a layer of additional modules on top of the Odoo CE core, offering
premium features that are expected to provide enough value to motivate users to upgrade.
The revenue from the Odoo EE funds the development for both the Odoo CE and EE. The
Odoo founder and CEO Fabien Pinckaers has repeatedly pledged a commitment to keeping
80% of the code as open source in the Odoo CE and 20% in the proprietary Odoo EE.

The biggest strength of any open source project is the community around it. Odoo has
an active community of contributors. For the Odoo product, the community contributes
with feature feedback, translations, security issue reports, bug fixes, and occasionally some
technical improvements to the core product. The Odoo CE is developed at https://
github.com/odoo/odoo.

https://github.com/odoo/odoo
https://github.com/odoo/odoo

Understanding basic Odoo concepts 7

Beyond the Odoo core product, the community publishes additional Odoo modules
that add features. Many individuals and companies in the Odoo community make their
Git repositories publicly available under open source licenses. They also publish them
in Odoo Apps – which is the official Odoo app store: apps.odoo.com. The app store
allows for both free and paid modules.

The Odoo core project does not offer a space to host these community module efforts, so
they are developed in a dispersed way, with no common standards and quality controls.
The Odoo Community Association (OCA) was created to address this issue. It provides
the space to host community-contributed modules, along with common coding standards,
guidelines, quality controls, and the tools for these workflows. The OCA code repositories
can be found at https://github.com/oca, and the published modules can also be
browsed at https://odoo-community.org/shop.

Odoo product versions
At the time of writing, Odoo's latest stable version is version 15, marked on GitHub as
branch 15.0. This is the version we will work with throughout this book. Major stable
versions of Odoo are released on a yearly basis at the annual Odoo Experience conference
every October.

The last three stable versions are officially supported. With the release of version 15,
versions 14 and 13 are still supported, but versions up to 12 have no official support. This
means that they don't receive bug and security fixes anymore.

Odoo databases are incompatible between its major versions. If you run an Odoo 15 server
against a database created for a previous major version of Odoo, it won't work. Non-trivial
migration work is needed before a database can be used with a later version of Odoo.

The same is true for addon modules. As a general rule, an addon module developed for
a major Odoo version will not work on other versions. When downloading a community
module from the web, make sure it targets the Odoo version you are using.

Major releases – such as 15.0 – are expected to receive frequent updates, but these
should be mostly bug fixes and not new features. They are guaranteed to be API-stable,
meaning that model data structures and view element identifiers will remain stable. This
is important because it means there will be no risk of custom modules breaking due to
incompatible changes in the upstream core modules.

The Odoo Online SaaS edition may use intermediary versions, which are sometimes
called the SaaS versions. These are also officially supported. The current list of supported
versions can be checked at https://www.odoo.com/documentation/user, in the
Practical Information section of the Support page.

http://apps.odoo.com
https://github.com/oca
https://odoo-community.org/shop
https://www.odoo.com/documentation/user

8 Quick Start Using the Developer Mode

The version in the master branch version will result in the next major stable version, but
until then, it's not API-stable and you should not use it to build custom modules. Doing
so is like moving on quicksand – you can't be sure when changes will be introduced and
they could break your custom module. You have been warned.

The Odoo architecture
It's useful to understand the layers involved in the Odoo architecture and the role of
each type of component we will use. So, we will now take a look at the Odoo application
architecture and focus on how we can help application development by decomposing
work into several component layers.

Odoo applications can be decomposed into three tiers: the Data, Logic, and
Presentation tiers:

Figure 1.1 – The Odoo application layers

The Data tier is the lowest-level layer and is responsible for data storage and persistence.
Odoo relies on a PostgreSQL server for this. PostgreSQL is the only supported database
server in Odoo, and this is a design choice. Binary files – such as the attachments
of documents or images – are stored in the filesystem in a directory referred to as
filestore.

Note
This means that a full backup of an Odoo instance needs both a database dump
and a copy of filestore.

Understanding basic Odoo concepts 9

We will rarely use SQL to interact directly with the database engine; however, this is
possible and might be needed in particular cases.

Odoo relies on its Object Relational Mapping (ORM) engine as the interface between the
apps and the database. The ORM provides the application programming interface (API)
used by the addon modules to interact with the data. We implement the Data tier using
ORM models. For example, the Partner data entity, which is used for data records such as
customers or suppliers, is represented by a model.

As a general rule, the low-level database should only be accessed by this layer because it
ensures secure access control and data consistency. ORM models are based on a Python
object class that supports several interaction methods, such as the CRUD basic operations.
In particular, these CRUD operations are implemented by the create(), search(),
write(), and unlink() model methods.

The Logic tier is responsible for all of the interactions with the Data tier and is handled
by the Odoo server. The basic CRUD operations can be extended to implement specific
business logic. For example, the create() and write() methods might implement
default values or some other automation. Other code methods can be added to enforce
validation rules or automatically compute field values.

The Presentation tier is responsible for presenting data and interacting with the user.
It is implemented by the client part of the software, which is responsible for end user
interaction. The client software uses remote procedure calls (RPCs) to the Odoo service,
running the ORM engine and the business logic. The ORM API calls are sent to the Odoo
server for processing to read, write, verify, or perform any other action. Then, the results
are sent back to the client for further handling.

Odoo provides a web client out of the box. The web client supports all of the features needed
by a business application, such as login sessions, navigation menus, data lists, and forms.

A website framework is also available to use as a public frontend for external users.
It provides CMS features, allowing us to create both static and dynamic web pages.
The website framework uses controller components for the code implementing the
presentation-specific logic, keeping it separate from the model's intrinsic logic. The page
rendering uses QWeb as the templating engine. These are XML documents that contain
HTML markup plus specific XML QWeb tags for operations such as loops, conditions, or
calls to include other templates.

10 Quick Start Using the Developer Mode

The Odoo server API is open, and all server functions are available through it. The server
API used by the official web client is the same as the one available to any other application.
So, other client implementations are possible and could be built in almost any platform
or programming language. Desktop and smartphone applications can be built to provide
specific user interfaces, leveraging the Odoo Data and Logic tiers for business logic and
data persistence.

Using an Odoo SaaS trial database
The simplest way to get started with Odoo is to use an Odoo software as a service (SaaS)
trial database. In this case, we don't need to install anything – just go to https://odoo.
com/ and click Try it free button.

You will be asked to select the first app to install in the new database. For the purpose
of following this chapter, any choice will work for us, so feel free to choose any of the
proposed apps. If you're unsure, the CRM app is a good choice.

Figure 1.2 – The Odoo SaaS trial database initial app choice

https://odoo.com/
https://odoo.com/

Installing Odoo in your workstation 11

New SaaS databases use the latest Odoo SaaS version – which is always based on the last
stable Odoo EE version – but also have their own minor releases. So, it will not match the
last stable Odoo EE version exactly.

The free trial will be valid for a period of 15 days. At the time of writing, the Odoo SaaS
edition offers a free plan that allows you to keep this database running after this period (as
long as you have more than one app installed).

Installing Odoo in your workstation
Using an Odoo SaaS trial database will be the default choice for this chapter. For the
rest of the book, we will use a local Odoo installation, and in Chapter 2, Preparing the
Development Environment, we will guide you through this process.

It is still worth noting that there are a few prepackaged installation alternatives for Odoo.
We will briefly guide you through the available options in case you want to try any of them:

• Install Odoo with a prepackaged installer for your operating system: This is a
good option if you're new to Odoo and want to quickly have a local environment
running. Prepackaged installers are available for the following: Windows (EXE
installer); Debian/Ubuntu (DEB package), and CentOS/RHEL (RPM package).

• Install Odoo using a Docker container: This could be a good option if you have
experience with Docker and already have it installed on your system. If you're
not confident with Docker, you might want to try another option so that learning
Docker doesn't distract you from your current goal (learning Odoo development).

Odoo packages can be downloaded from https://download.odoo.com. They are
available for all stable Odoo versions, as well as for the master branch corresponding to the
latest development version. We will explain each of these options in the following sections.

For additional information on installing Odoo, you can refer to the official documentation
at https://www.odoo.com/documentation/15.0/setup/install.html.

https://download.odoo.com
https://www.odoo.com/documentation/15.0/setup/install.html

12 Quick Start Using the Developer Mode

Installing on Windows using the all-in-one installer
Odoo provides an all-in-one installer for Windows, providing everything needed to run
Odoo: a Python 3 runtime environment, a PostgreSQL database server, and the Odoo
server with the required dependencies.

The installer can be downloaded from https://download.odoo.com. Select the
desired version from the home page: 15 (stable) - Community Edition. The daily builds
should be in 15.0/nightly/windows, and the latest build should be at the bottom of
the list.

The installer is straightforward to follow. Odoo will be automatically started at the end of
the installation.

It will also create a Windows service to automatically start the Odoo and PostgreSQL
services when the machine starts. Remember this when you try other installation options
such as the source code installation – port 8069 will already be used by the Windows
installation, and this will prevent other installations from using the same port.

Installing on Linux using a pre-packaged installer
The Odoo download site (https://download.odoo.com) provides repositories with
official packages for the Debian family (including Ubuntu) and for RHEL/CentOS.

Installation instructions for using the system-packed installers (apt or yum) are provided
on the home page. Make sure that you replace the Odoo version used in the command
line examples with your target one – for example, 15.0.

Before installing Odoo 15 on our Linux system, you should install the PostgreSQL
database. This way, Odoo will be able to create and configure its user.

Installing Odoo using Docker containers
Docker provides a convenient multi-platform solution to run applications. It can be used
to run applications on Windows, Linux, and macOS. The container technology is simple
to use and resource-efficient when compared to classic virtual machines.

You must first have Docker installed on your system. Docker Desktop is the community
edition and is free to use. It can be downloaded from https://www.docker.com. It
is worth referring to the Docker website for the latest installation details. Docker relies
on virtualization hardware features, so make sure that your basic input/output system
(BIOS) has these features enabled.

https://download.odoo.com
https://download.odoo.com
https://www.docker.com

Installing Odoo in your workstation 13

General guidance on how to install and run Docker can be found at https://docs.
docker.com/engine/install.

For example, for Ubuntu systems, the detailed installation instructions point to
https://docs.docker.com/engine/install/ubuntu/.

Important post-installation steps – such as running Docker with a non-root user
– can be found at https://docs.docker.com/engine/install/linux-
postinstall/.

Docker Desktop for Windows requires Hyper-V, which is only available in Windows 10
Enterprise or Education releases. Up-to-date details should be available at https://
docs.docker.com/desktop/windows/install/.

Docker Desktop for Mac requires macOS 10.14 or later. Up-to-date details should be
available at https://docs.docker.com/desktop/mac/install/.

Note
Docker Toolbox used to be available as an alternative for other Windows and
macOS versions, but this distribution is now deprecated. Docker Toolbox
bundles VirtualBox and provides a preconfigured shell that should be used as
the command-line environment to operate Docker containers. See https://
docs.docker.com/toolbox/ for more details.

The Odoo Docker official images are available on Docker Hub at https://hub.
docker.com/_/odoo. There, we can also find basic instructions to get started with the
Odoo Docker images. To run Odoo, two Docker containers will be created: one for the
PostgreSQL database and the other for the Odoo server.

The installation and operation are done from the command line. To install the PostgreSQL
Docker container, run the following:

$ docker run -d -e POSTGRES_USER=odoo -e POSTGRES_PASSWORD=odoo
-e POSTGRES_DB=postgres --name db postgres:13

This will download the latest PostgreSQL image from the internet and start a container for
it to run as a background job.

Next, install and run the Odoo server container, linking it to the PostgreSQL container we
just started, and exposing it on port 8069:

$ docker run -t -p 8069:8069 --name odoo --link db:db odoo:15.0
-d odoo15

https://docs.docker.com/engine/install
https://docs.docker.com/engine/install
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/linux-postinstall/
https://docs.docker.com/engine/install/linux-postinstall/
https://docs.docker.com/desktop/windows/install/
https://docs.docker.com/desktop/windows/install/
https://docs.docker.com/desktop/mac/install/
https://docs.docker.com/toolbox/
https://docs.docker.com/toolbox/
https://hub.docker.com/_/odoo
https://hub.docker.com/_/odoo

14 Quick Start Using the Developer Mode

With this, you will see the live Odoo server log in your terminal window, and you will
be able to access the Odoo instance by opening http://localhost:8069 with your
chosen web browser.

Note
The Odoo server can fail to start if port 8069 is already in use. For instance, it
could be in use by an already running Odoo server. In this case, you could look
for and stop the running service (for example, by looking at the list of running
services) or try to start this Odoo server on a different port by changing the -p
option. For example, to use port 8070, use -p 8070. In that case, you can also
use -d <dbname> to set the database name that this instance should use.

There are a few basic commands you should know to help manage these Docker
containers:

• docker stop <name>: Stops a container

• docker start <name>: Starts a container

• docker start -a <name>: Starts a container and attaches the output – such
as the server log – to the terminal window

• docker attach <name>: Reattaches a container's output to the current
terminal window

• docker ps: Lists the current Docker containers

These are the basic commands needed to operate our Docker containers.

In case you get into trouble running the containers, here is a recipe to start over:

$ docker container stop db

$ docker container rm db

$ docker container stop odoo

$ docker container rm odoo

The Docker technology has more potential, and it might be interesting to learn more
about it. The Docker website has good documentation to learn from, and a good place to
get started is https://www.docker.com/get-started.

https://www.docker.com/get-started

Enabling the developer tools 15

Enabling the developer tools
The Odoo developer tools are needed for us to implement our project. They are made
available by enabling the developer mode.

The developer mode is useful for inspecting and modifying the current Odoo
configurations. It allows us to customize Odoo apps directly from the UI and is a quick
way to make changes and add features. It can be used for making small modifications,
such as adding a custom field, or it can be used for larger customizations, such as creating
an application with its own menus, views, and underlying data model.

Caution
The developer mode exposes internal configurations for Odoo apps and allows
them to be changed. With great power comes great responsibility, so be careful
with the changes made. Always try these changes on a copy database before
making them in a live system. If things go wrong, there is a chance that an
upgrade of the affected app – or the base module – can resolve the issues, but
this is not guaranteed.

Making customizations through the developer tools has some limitations compared to the
programming tools covered throughout the rest of the book. For example, the developer
tools can't add or extend the default ORM methods.

The customizations made with the developer mode (and with the Odoo Studio app,
for that matter) can't be easily integrated into a structured development workflow with
version control, automated tests, and QA/staging/production code promotion workflows.

The developer mode features will be used in this chapter as a way to introduce how
the application configuration data is organized in the Odoo framework and how the
developer mode can be leveraged for simple customizations or prototyping solutions.

16 Quick Start Using the Developer Mode

Enabling the developer mode
For Odoo 13 and later, the developer mode is enabled on the Settings | General Settings
page. Near the bottom, you will find a Developer Tools section. There, you will find the
Activate the developer mode link. Clicking on this enables the developer mode features
for the current browser window, as shown in the following screenshot:

Figure 1.3 – The Developer Tools options section on the Settings page

Note that the General Settings menu option is only visible if there is at least one app
installed. If it is not available, install an app such as Contacts or CRM (or any other of
your choice).

Changes in Odoo 13
In Odoo versions 10 to 12, the developer mode is enabled on the Settings
| Dashboard page in the lower-right corner. For Odoo 9 and before, the
developer mode is activated in the About dialog window, which is available
from the User menu in the upper-right corner of the web client.

Enabling the developer tools 17

Once the developer mode is enabled, we will see the following menus made available:

• On the top menu bar, the developer tools bug icon will be on the right-hand side
next to the Conversations and Activities icons.

• On the Settings app, the Technical and Translations menu items will be visible on
the top bar.

Figure 1.4 – The Settings page with the developer mode enabled

The developer mode also enables additional information on the web client views – when
hovering the mouse pointer over a field, a tooltip will display technical information
relating to it.

Note
The developer mode can also be enabled by directly editing the current URL
without having to leave the current page to open the settings. Edit the URL to
change the .../web#... part to insert .../web?debug=1#... in
its place. For example, http://localhost:8069/web#home would
become http://localhost_8069/web?debug=1#home.

18 Quick Start Using the Developer Mode

Using the developer mode with assets
For faster load times, the web client minifies the JavaScript and CSS assets into compact
files. Unfortunately, that makes web client debugging nearly impossible.

The Activate the developer mode (with assets) option prevents this minification and
loads the web assets in individual, non-minified files. This is useful to debug the web client
itself, but it comes at the expense of making the web client navigation slower.

Tip
Both Firefox and Chrome browsers have extensions available providing a
button to conveniently enable and disable the developer mode in Odoo. Search
for Odoo Debug in their extension stores.

About Odoo Studio
It is also worth noting that both the Odoo EE and the Odoo SaaS edition offer the Odoo
Studio app – an interactive application builder. We won't be using it because it's not
available for the Odoo CE that is used as the example edition in this book.

Odoo Studio provides a user-friendly UI for the same interactive development features
introduced in this chapter – along with a few extra features, such as the ability to export
our customizations to a file.

Here, we will be using the developer mode (sometimes referred to as the debug mode)
and the Technical menu, which are both available in all Odoo editions. Most of what can
be built using Odoo Studio can also be built with these tools – albeit in a more technical
way that is not as easy for non-developers.

Adding a custom field to a model
Adding a custom field to an existing form is a common customization, and it can be done
from the UI without the need to create a custom module.

For our to-do list app, we want to select a group of people that will be able to collaborate
on to-do items. We will identify them by setting a flag on their partner form. To do that,
we will add an Is Work Team? flag to the Contact model.

Adding a custom field to a model 19

The Contact model is part of the Odoo core and is available even if you haven't installed
any apps yet. However, you may not have a menu option available to visit it.

If the Contacts app is not available in the main menu, you should install it now. To do this,
open the Apps item in the top menu, look up this application, and install it.

Figure 1.5 – The Contacts app listed in the Apps menu

Once the app is installed, the Contacts application top menu option will be available.

Adding a field to a model
We will start by adding a custom field to the data model.

To do this, click the Contacts app menu item to see the Contacts main view. Click the
developer tools bug icon and select the View Fields option.

Changes in Odoo 12
The View Fields option in the developer menu was added in Odoo 12. For
earlier versions, fields can be added and edited in the Settings | Technical |
Database Structure menu. You can either use the Models or the Fields option.

20 Quick Start Using the Developer Mode

Now, you will see a list with all the existing fields for the current model: Contact. Click the
Create button in the top left and fill in the details for this new field:

• Field Name: x_is_work_team

• Field Label: Is Work Team?

• Field Type: boolean

Figure 1.6 – Creating the Is Work Team? field

The Field Name field entry must start with the x_ prefix. This is mandatory for models
and fields created from the developer tools. Customizations made through addon modules
don't have this limitation.

Click Save, and our new field should have been added to the fields list. By default, the
list view is limited to 80 records, so you will need to use the right arrow in the upper-left
corner to navigate to the next page to see the new field, or you can edit the number of
records to present next to the page navigation arrows.

Adding a custom field to a model 21

Adding a field to a form view
Our new field is now available in the Contact model (as noted previously, this is also
known as the Partner model). But it is not visible in the UI. It now needs to be given a
view. We will add it to the contact's form view.

Go back to the Contacts list and open the form view, either by selecting one of the
existing contacts or by clicking on the Create button.

We should now decide where in the form we want to add the field. For example, we could
add it after the Tags field. This will be the extension point to use.

Hovering the mouse pointer over the field shows us useful technical details for it, as
shown in the following screenshot:

Figure 1.7 – The Tags field tooltip with technical details

Next, we need to find out the technical name of that field. We can find this by hovering
the mouse pointer over the field's label. By doing so, we can see that the field name is
category_id.

22 Quick Start Using the Developer Mode

We can now extend the form view to add that field. Click the developer tools bug icon and
select the Edit View: Form option. This will open a window with the form's definition.

Figure 1.8 – The Edit View: Form window

In the Architecture tab, we can see the XML for the base view. We could edit this directly,
but this is not a good idea because those changes will be lost in the case that the module
adding it is upgraded. The correct way to edit it is by creating an extension view.

When additional modules are installed, they can add more fields and visual elements to
the base view. This is done using extension views, and we can see them in the Inherited
Views tab. This is where we will be adding our own extension to the contacts form view.

Adding a custom field to a model 23

On the Inherited Views list, click Add a line at the bottom and create the extension view
using these values:

• View Name: Add some short description such as Contacts Form extensions
for To-do App.

• Architecture: This requires an XML fragment specifying an extension
point and the content to add. Use <field name="category_id"
position="after"><field name="x_is_work_team"/></field>.

The extension view should look like the following figure:

Figure 1.9 – Creating an extension view to add the category_id field

Now, click Save & Close – if your XML is correct, you get back to the Inherited Views
list, where our extension will also be included. Click Save to finalize the form changes, and
close the Edit Form: View window by clicking the x button in the top right.

24 Quick Start Using the Developer Mode

The change is made, but the form needs to be reloaded for us to see it. Reload the page,
and the Is Work Team? field should now be visible below the Tags field, as shown in the
following figure:

Figure 1.10 – The Contacts form view with the Is Work Team? field visible

This completes the steps needed to add a custom field to a form view. Forms are one of the
view types available. The following section discusses view types in more detail.

Understanding view types
We just interacted with a particular view type, the form view. But the user interface also
uses other view types.

The initial view type for Contacts is a kanban view, showing the records in data cards.
Kanban views can also group the cards in columns. For example, the CRM app uses this
in the initial view, the Pipeline view. In a kanban view, the developer menu will show an
Edit View: Kanban option.

The list view (sometimes referred to as the tree view) displays the records as a list. In a list
view, the developer menu will show an Edit View: List option.

Adding a custom field to a model 25

Finally, the search view controls the behavior of the search box on the top-right of the
kanban and list views, as well as the buttons under it: Filters and Group By. When a search
box is visible, the developer menu will show an Edit View: ControlPanelView option.

The view types available are not limited to these; there are others available that will be
explored in Chapter 10, Backend Views – Designing the User Interface.

We can see all the view definitions via the Settings | Technical | User Interface | Views
menu option.

A more focused alternative is to use Settings | Technical | Database Structure | Models
to find the model we want (in this case, res.partner, alternatively known as Contact),
and open the Views tab.

Figure 1.11 – The database structure for the Contact model

Here, we can see all the view definitions for the selected model. We can see records for the
different view types – identified by the View Type column – and for base views and their
extensions. Changing or adding view records is immediately effective, and the changes
will be visible the next time the view is reloaded.

Sorting the list by view type is helpful to see all the extensions related to the same view
type together.

26 Quick Start Using the Developer Mode

The base view is the one with an empty Inherited View field. A view type is not limited
to a single base view. For example, the Contact model (res.partner) has multiple base
views available for the form view, such as base.view_partner_form and base.
view_partner_simple_form.

Views also have a Sequence field. The base view with the lowest Sequence number is the
one displayed by default. When visiting the form for the view definition, we will see a field
with this Sequence value. Window actions, which are used in menu items, can specify a
particular base view to use. As mentioned, if no specific view is defined, the one with the
lowest sequence will be used.

Creating a new model
Models are the basic components for building applications and provide the data structures
and storage to be used. Next, we will create the model for our to-do list app with three fields:

• Description text

• The Is Done? flag

• Work team (that is, a list of people collaborating in this item)

Model names should use the singular form, so the new model should be named To-do
Item. The model technical name must be a valid database object identifier, so we should
use letters and underscores and avoid other symbols. Since the models created through
the Technical menu must have an x_ prefix, the technical name for the new model will be
x_todo_item.

Model definitions are accessed in the Settings app in the Technical | Database Structure |
Models menu.

To create a new model, click the Create button on the Models list:

1. Fill in the basic definition values for it – enter To-do Item in the Model
Description field and x_todo_item for the Model field.

2. By default, the model will include in the fields list the x_name field. This is a
title that represents the record in lists or when it is referenced in other records. It
can be used for the To-do Item title, so edit it to change the Field Label column
accordingly.

Creating a new model 27

3. Next, add the Is Done? field. This should be straightforward. On the Fields list,
click Add a line at the bottom of the list to open the new field form, and then, enter
these values:

 � Field Name: x_is_done

 � Field Label: Is Done?

 � Field Type: boolean

Then, click the Save & Close button and click Save on the model form.

Figure 1.12 – The Create Fields form

28 Quick Start Using the Developer Mode

4. Now, adding the Work Team field should be a little more challenging. Not only is
this a relation field that refers to records in the Contact (res.partner) model, but
it is also a multiple-value selection field.

Fortunately, Odoo supports many-to-many relations. This is the case here since a
to-do item can be related to many contacts, and each contact can be related to many
to-do items.

To add the Work Team field on the Fields list, click again on the form Edit button,
then click Add a line to open the new field form. Then, enter these values:

 � Field Name: x_work_team_ids

 � Field Label: Work Team

 � Field Type: many2many

 � Related Model: res.partner

 � Domain: [('x_is_work_team', '=', True)]

Many-to-many fields have a few specific base properties: Relation Table, Column
1, and Column 2. These are automatically filled out for you, and the defaults work
for most cases. These properties are discussed in more detail in Chapter 6, Models –
Structuring the Application Data.

The Domain attribute is optional and defines a filter for the records to be presented.
We are using it to limit the selectable contacts to the ones that have the Is Work
Team? flag checked on them. Otherwise, all contacts would be available for selection.

The domain expression to use follows an Odoo-specific syntax – it is a list of triplets,
where each triplet is a filter condition, indicating the field name to filter, the filter
operator to use, and the value to filter against. A detailed explanation of domain
expressions is given in Chapter 7, Recordsets – Working with Model Data.

Tip
Odoo has an interactive domain filter wizard that can be used as a helper to
generate domain expressions. To use it, select the Settings | Technical | User
Interface | User-defined Filters menu option. Once a target model is selected
in the form, the Domain field will display an + Add filter button to add filter
conditions. When doing so, the textbox below it will dynamically show the
corresponding domain expression code.

Creating a new model 29

5. When we are done, click the model form Save button. When the new model is
created, a few fields are automatically added. The ORM engine includes them in all
models, and they can be useful for audit purposes:

Figure 1.13 – The database structure for the To-do Item model

We now have the underlying model for the to-do list app, but it is still not accessible by users.
For that, access security needs to be configured. So, let's look at that in the next section.

30 Quick Start Using the Developer Mode

Creating menu items and actions
We now have a model to store the to-do items and want to have it available in the UI. This
is done by adding menu items to the UI.

We will create a top-level menu item that directly opens the to-do list. Some apps (such as
Contacts) work like this, while others have submenu items shown in the top bar.

Menu definitions can be found in the Settings app in the Technical | User Interface |
Menu Items option:

Figure 1.14 – The Technical menu Menu Items option

We'll perform the following steps to create menu items:

1. Navigate there, click on Create, and enter the following values:

 � Menu: To-do.

 � Parent Menu: [leave empty].

 � Action: Select the ir.actions.act_window option.

 � In the selection box next to the Action field, type To-do Items, and in the
drop-down list, select Create and Edit.... This will open a Create: Action form.

Creating menu items and actions 31

2. In the Create: Action form, set the following values:

 � Action Name: To-do Items

 � External ID Object: x_todo_item (the technical name of the target model).

 � At this point, the action definition should look like this:

Figure 1.15 – The Create: Action form

3. Click Save in the Create: Action form. Then, click Save in the Menu Items form,
and the menu item for the to-do list application should be almost ready to use.

Changes to menus require a full browser page reload to be visible. In most browsers, the
F5 key can be used for this. But if we try that now, we won't be able to see the To-do menu
option yet. Why? The reason we won't be able to see the menu yet is that our user wasn't
given access to it.

Access security needs to be configured before the menu item can be presented to the
users. We will take care of that in this chapter, but before that, it is worth discussing a few
more details about window actions.

32 Quick Start Using the Developer Mode

Understanding window actions
In our case, an action was added directly to a top-level menu item with no child menu
items. But menus can be a tree of menu items with parent/child relations. The leaf menu
items have a related action that defines what happens when it is selected. This action name
is what will be used as the title of the presented view.

There are several action types available, and the most important ones are window, report,
and server actions. Window actions are the most frequent ones and are used to present
views in the web client. Report actions are used to run reports and server actions are used
to define automated tasks.

At this point, we are concerned with window actions that are used to display views.
The menu item we just created for the to-do item uses a window action that was created
directly from the Menu Item form. We can also view and edit this window action from
the Settings | Technical | Actions menu options. In this particular case, we are interested
in the window actions menu option.

Tip
In many cases, it is more convenient to use the Edit Action option in the
Developer Tools menu, providing a convenient shortcut to edit the window
action that was used to access the current view.

Configuring access control security
Odoo includes built-in access control mechanisms. A user will only be able to use the
features they were granted access to. This means that the To-do Item model we created is
not accessible by the users.

Changes in Odoo 12
The admin user is now subject to access control like any other user. In
previous Odoo versions, the admin user was special and bypassed security
rules. This is no longer true, and admin must be granted access privileges to
be able to access model data.

Access security is defined using user groups. Groups, which are sometimes called access
control lists (ACLs), define the access permissions for models. Users belong to groups. So,
each user's access depends on the group they belong to.

For our project, we will create a to-do group to be assigned to the users that should have
access to this feature.

Configuring access control security 33

Furthermore, we can also define record rules (sometimes called row-level security),
restricting the records each user can access.

For our project, we want the to-do items to be private for each user, so users should only
be able to access the records they created.

Security groups
Access control is based on groups. A security group is given access privileges on models,
and this will determine the menu items available to the users belonging to that group. For
more fine-grained control, we can also give access to specific menu items, views, fields,
and even data records by using record rules, which we will explain in the next section.

Security groups are also organized around apps, and typically, each app provides at least
two groups: User, with permissions for performing daily tasks, and Manager, with
permissions for performing all configurations for that app.

We will now create a new security group for the to-do list app.

In the Settings top menu, navigate to Users & Companies | Groups and create a new
record using the following values:

• Application: [leave empty] .

• Name: To-Do User.

• Inherited tab: Add a line and select User types / Internal User.

This is how it should look:

Figure 1.16 – The To-Do User security group

34 Quick Start Using the Developer Mode

Our security group inherits the Internal User group. Group inheritance means that
members of this group will also be members of the inherited groups and will accumulate
the permissions granted to all of them. The Internal User group is the basic access
group, and app security groups usually inherit it.

Changes in Odoo 12
Before Odoo 12, the Internal User group was called Employee. This
was just a cosmetic change, and the technical identifier (that is, the XML ID) is
still the same as in previous versions: base.group_user.

Security access control lists
Now, we can grant the group/to-do user access to specific models.

The simplest way to do this is to use the Access Rights tab in the Groups form. Add a line
there using these values:

• Name: To-do Item User Access.

• Object: Select To-do Item from the list.

• Read Access, Write Access, Create Access, and Delete Access: Check all of these
checkboxes to grant the respective privileges.

It is useful to know that these model ACLs can also be managed from the Technical |
Security | Access Rights menu item.

Notice that we don't need to specifically add access to the Contact model since we are
inheriting the Internal User group that already grants access to it.

Assigning security groups to users
Now, we can try these new security settings by adding the admin user to this new
security group:

1. Select the Users & Companies | Users menu item, open the Mitchell Admin user
form, and click Edit.

Configuring access control security 35

2. In the Other section in the Access Rights tab, we will see a To-do User checkbox to
enable the security group for this user. Select it and save the form.

Figure 1.17 – The Mitchel Admin user form

36 Quick Start Using the Developer Mode

If everything went as expected, you should be able to see the To-do app top menu.
A browser page reload should be needed to force a refresh of the menu items.

We haven't created any views for it yet, but the Odoo framework is nice enough to
automatically generate some basic views for us:

Figure 1.18 – The To-do Items default form view

Security record rules
When given access to a model, users will be able to access all of its records by default. But
in some cases, we need to restrict what records each user can access. This can be done
using record rules.

Record rules set domain filters on models that will be enforced when read or write
operations are made on them.

For example, in our to-do list app, the to-do items are expected to be private to each user,
so we want each user to only see their own items. So, we should create a record rule with
a filter to show only the records created by the current user, taking the following into
consideration:

• Records have a create_uid field – which is automatically added by the
framework – that stores the user that created the record. So, we can use it to know
who owns each record.

• The domain evaluation context includes a user variable that contains a browser
record for the current user. So, we can use dot notation on it to access its attributes,
such as the user.id value.

Configuring access control security 37

We can use this in a domain expression to achieve our goal:

[('create_uid', '=', user.id)]

Record rules are available in the Settings | Technical | Security | Record Rules menu, or
in the View Record Rules option in the developer menu. Navigate there and create a new
record rule with the following values:

• Name: Enter a descriptive title such as To-do User Own Items.

• Model: Select the model from the drop-down list (in our case, To-do Item).

• Access Rights: These checkboxes control the actions where the rule will be applied.
Keep all of them checked.

• Rule Definition (Domain Filter): Enter [('create_uid', '=', user.
id)].

• Groups: This section contains the security groups the rule will apply to. Click Add a
line and select the To-do User group option.

Now, this is what the record rules definition will look like:

Figure 1.19 – The To-do User Own Items record rule

And we're done. You can now try this new rule by creating a couple of to-do items with
both the Admin and Demo users. Each should be able to see only their own items.

38 Quick Start Using the Developer Mode

Understanding the superuser account
Odoo includes an internal root-like superuser that has special privileges and bypasses
security controls. It is used for internal operations or actions that need to ignore security
controls. This superuser is named OdooBot – it is automatically created upon database
creation and has the database ID 1.

Changes in Odoo 12
Before Odoo 12, the default admin user used for system setups was also the
superuser. So, the admin user bypassed access controls by default. This is no
longer the case since Odoo 12. Now, the default admin user is a regular user,
but it is set as the manager on all Odoo apps by default.

The superuser has no login password, but it is possible to enable one. When logged in as a
user with the Admin \ Setting group, the Become Superuser option is then available
in the developer menu.

It is also possible to go directly into superuser mode from the login screen. For this, you
need to enable the developer mode by editing the URL to add ?debug=1 (for example,
http://localhost:8069/web/login?debug=1). Then, the Login as superuser
option will be available below the Login button.

When the superuser is enabled, in the upper-right corner, the current user is shown as
OdooBot, and the colors in the upper-right area change to yellow and black stripes to
make it clear the superuser is enabled.

Caution
Using the superuser should be done only if absolutely necessary. The fact that
the superuser bypasses access security can lead to data inconsistencies – for
example, in a multi-company context – and should be avoided.

Creating views
We created the To-do Item model and made it available in the UI with a menu item. Next,
we will be creating the two essential views for it: the list and form views.

The list view is the most basic way for users to browse the existing records. In some cases,
records can be edited directly in the list view, but the most common case is to navigate to a
form view when clicking on a record to edit the record data.

Creating views 39

Creating a list view
We can manage views in Settings | Technical | User Interface | Views. There, click the
Create button and enter the following values:

• View Name: To-do List View.

• View Type: Tree.

• Model: x_todo_item.

• Architecture: This tab should contain the XML for the view structure. Use the
following XML code:

<tree>

 <field name="x_name" />

 <field name="x_is_done" />

</tree>

This is what the view definition is expected to look like:

Figure 1.20 – The To-do List View definition

The basic structure of a list view is quite simple – it contains a <tree> element containing
one or more <field> elements for each of the columns to display in the list view.

We can do a few more interesting things with list views, and we will explore them in more
detail in Chapter 10, Backend Views – Designing the User Interface.

40 Quick Start Using the Developer Mode

Creating a form view
Form views can also be created in Settings | Technical | User Interface | Views. Create
another view record by clicking the Create button and enter the following values:

• View Name: To-do Form View.

• View Type: Form.

• Model: x_todo_item.

• Architecture: In this tab, add the following XML code:

<form>

 <group>

 <field name="x_name" />

 <field name="x_is_done" />

 <field name="x_work_team_ids"

 widget="many2many_tags"

 context="{'default_x_is_work_team': True}" />

 </group>

</form>

Note
If we don't specify the view type, it will be auto-detected from the view
definition.

The form view structure has a root <form> element, which contains elements such as
<field> among others. We will learn about these other elements in Chapter 10, Backend
Views – Designing the User Interface. For the x_work_team_ids work team field, we
chose to use a specific widget – many2many_tags – that presents the related records as
button-line tags instead of the usual list.

You can also see that a context attribute is being used in the x_work_team_ids work
team field. By default, relational fields allow us to directly create a new record to be used
in the relation. So, users can create a new Partner record directly from the Work Team
field. Since only partners with the Is Work Team? flag set are selectable, we want any
created partners to have this flag enabled by default. This is what the default_x_is_
work_team context key is doing – setting a default value for the records created from
this field.

Creating views 41

And with that, we have our new form view. If we now try the To-Do menu option and create
a new item or open an existing one from the list, we will see the form view we just added.

Creating search views
We can find a search box in the top left of the Odoo views screen. The search box allows
us to search in particular fields. The Filters and Group By buttons are available under the
search box and offer some predefined options.

The Search view is the UI element controlling these behaviors. It defines the searches
made when typing in the search box and the options available in the Filters and Group
By buttons.

Views can be edited either in the Settings | Technical | User Interface menu or from the
Edit ControlPanelView option in the developer tools menu in Odoo 13, or Edit Search
View in previous Odoo versions.

The To-do Item model has no search view yet, so we should create a new one. We will add
an option to filter the outstanding to-do items to the filters menu.

Fill in the following values in the new View form and click Save:

• View Name: To-do Search View.

• View Type: Search.

• Model: x_todo_item.

• Architecture: In this tab, add this XML code:

<search>

 <filter name="item_not_done"

 string="Not Done"

 domain="[('x_is_done', '=', False)]" />

</search>

After this, and when reopening or reloading the to-do list view, the Not Done option
should be available in the Filters option list.

42 Quick Start Using the Developer Mode

Enabling default filters on views
It would be nice to have this filter enabled by default and remove it when needed.

When we click the To-do menu option, it runs a window action to open the To-do list
view. The window action context object can be used to set default filters in a similar way
to how default values can be set on fields.

Let's try this:

1. Open the To-do menu option to navigate to the To-do list view.
2. Open the developer tools menu and select the Edit Action option. This will open

a form with the window action used to open the current views. In the General
Settings tab, in the Filters section, we have the Context Value field, along with a
Domain Value field.

3. In the Context Value field, enter the following: {'search_default_item_
not_done': True}

The search_default_ prefix instructs a particular filter – item_not_done in this
case – to be selected by default. Now, if we click on the To-do menu option, we should see
the Not Done filter enabled by default on the search box, and the user is free to disable it.

The Domain Value field can also be used to set a filter on the records to present, but it will
be a fixed filter that can't be removed by the user.

Summary
In this chapter, we presented an overview of Odoo's components, and we also made use
of the developer mode to dive into Odoo's internals and understand how the components
work together to create applications.

We used these tools to build a simple application with models, views, and the
corresponding menu. We also learned how to use the developer tools to inspect existing
applications or make quick customizations directly from the UI.

In the next chapter, we will learn how to install Odoo from source and to prepare the
development environment to be used for Odoo module development.

2
Preparing the
Development
Environment

Before we dive into Odoo development, we need to set up our development environment
and learn about the basic administration tasks for it.

In this chapter, we will learn how to set up the working environment where we will build
our Odoo applications. We will set up an Ubuntu system to host the development server
instance. This can be a cloud server, a local network server, or a subsystem on your
Windows 10 computer.

By the end of this chapter, you will know how to prepare a development working
environment, run Odoo from source code, and have several projects and versions of Odoo
on the same machine. You will also know how Odoo server instances operate, as well as
how to work with them during your development work.

44 Preparing the Development Environment

The following topics will be covered in this chapter:

• Setting up a host for the Odoo server

• Installing Odoo from source

• Managing Odoo databases

• Configuring the Odoo server options

• Finding and installing community modules

• Using the server development options

The first steps of this chapter involve checking that we have met the technical
requirements for this chapter and setting up a host to install Odoo on later.

Technical requirements
In this chapter, we will install Odoo from source on an Ubuntu 20.04 operating system.
We only need a terminal environment; the Ubuntu graphical user interface is not needed.

If you don't have an Ubuntu 20.04 system available, a Windows 10 workstation will also
work. We will be using the Windows Subsystem for Linux (WSL) to ensure you have a
working Ubuntu environment on your Windows system.

The reference code for this chapter can be found in this book's GitHub repository
at https://github.com/PacktPublishing/Odoo-15-Development-
Essentials, in the ch02/ directory.

Setting up a host for the Odoo server
A Debian/Ubuntu system is recommended to run Odoo and is considered the reference
deployment platform. Odoo's own SaaS operations are known to be Debian-based and are
also the most popular choice in the community. This means that it will be easier to find
help or advice if you use Debian or Ubuntu.

Note
An option for developing and running Odoo is the Odoo.sh service. It provides
Git-based development workflows and provides all the complementary
services needed to run a production system, such as inbound and outbound
email. If this is your preference, the Odoo official documentation does a good
job of introducing it. It can be found at https://www.odoo.com/
documentation/user/15.0/odoo_sh/documentation.
html.

https://github.com/PacktPublishing/Odoo-15-Development-Essentials
https://github.com/PacktPublishing/Odoo-15-Development-Essentials
https://www.odoo.com/documentation/user/15.0/odoo_sh/documentation.html
https://www.odoo.com/documentation/user/15.0/odoo_sh/documentation.html
https://www.odoo.com/documentation/user/15.0/odoo_sh/documentation.html

Setting up a host for the Odoo server 45

If you already have an Ubuntu 20.04 system, you might be good to go. You just need to
check whether you have elevated access to perform the necessary installation steps. To
check this, try to run the following command on a terminal. If it is successful, you can
move on to the next section:

$ sudo apt list

If you are using Windows, the simplest solution is to use WSL. We will guide you through
doing that next.

If this doesn't work for you, an alternative is to use a virtual machine. We won't be
providing details for that, but these pointers might be useful:

• VirtualBox is a free cross-platform virtualization software, available at
https://www.virtualbox.org.

• Ubuntu Server ISO images can be downloaded from
https://www.ubuntu.com/server. It is recommended to use the latest
long-term support (LTS) version available.

TurnKey Linux provides easy-to-use preinstalled images in several formats, including ISO.
The ISO format will work with any virtualization software you choose, even on a bare-
metal machine you might have. A good option might be the LAPP image, which includes
Python and PostgreSQL. It can be found at http://www.turnkeylinux.org/lapp.

Installing the Windows Subsystem for Linux
The more robust Windows Subsystem for Linux 2 (WSL 2) was made generally
available starting from Windows 10 version 2004, in March 2020. With it, we can have
an Ubuntu system running inside Windows, capable of performing everything we need
for Odoo development. More information on WSL 2 can be found at https://docs.
microsoft.com/en-us/windows/wsl/wsl2-index.

WSL is a Windows 10 optional feature and must be enabled first. After that, we should
install Ubuntu from the Windows Store. The official instructions for that can be found at
https://docs.microsoft.com/en-us/windows/wsl/install.

After this, we should install the Ubuntu Windows app. Open the Windows Store and
search for Ubuntu. At the time of writing, the latest Ubuntu LTS release is 20.04. Follow
the installation process, including setting up a user account and corresponding password.

https://www.virtualbox.org
https://www.ubuntu.com/server
http://www.turnkeylinux.org/lapp
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/wsl2-index
https://docs.microsoft.com/en-us/windows/wsl/install

46 Preparing the Development Environment

Running the Ubuntu application will open the Linux command-line window, where
we can run Ubuntu commands. Take note of the username and password that were
configured during the Ubuntu installation, since you will be prompted for this
information whenever actions need to be performed with elevated privileges, such as
when using sudo.

Now that we have a Debian-based operating system to work with, we are ready to install
Odoo and its dependencies, including the PostgreSQL database.

Installing Odoo from source
Odoo uses the Python programming language to run and uses the PostgreSQL database
for data storage. To run Odoo from source, we will need to install the Python libraries it
depends on. The Odoo source code can then be downloaded from GitHub. Using a Git
repository should be preferred over downloading the source code ZIP or tarball file. Using
Git gives us control over the code versions and is a good tool for our release process.

Note
The exact dependency installation may vary, depending on your operating
system and on the Odoo version you are installing. If you have trouble with
any of the previous steps, make sure you check the official documentation
at https://www.odoo.com/documentation/15.0/setup/
install.html. Instructions for previous editions are also available there.

Installing the PostgreSQL database
Odoo needs a PostgreSQL server to work with. The typical development setup is to have
PostgreSQL installed on the same machine as Odoo.

To install the PostgreSQL database on your Debian/Ubuntu system, run the following
commands:

$ sudo apt update

$ sudo apt install postgresql # Installs PostgreSQL

$ sudo su -c "createuser -s $USER" postgres # Creates db
superuser

The last command creates a PostgreSQL user for the current system user. This is needed
for your system user to be able to create and drop databases that are used by Odoo
instances.

https://www.odoo.com/documentation/15.0/setup/install.html
https://www.odoo.com/documentation/15.0/setup/install.html

Installing Odoo from source 47

If you are running Ubuntu inside WSL, note that system services are not automatically
started. This means that the PostgreSQL service must be manually started for the database
to be available. To manually start the PostgreSQL service, run the following command:

$ sudo service postgresql start

Installing the Odoo system dependencies
Odoo requires some system libraries to run. Git is needed to get the version-controlled
source code, and Python 3.6 or later is needed to run Odoo 13. The following are the basic
system dependencies that are needed:

$ sudo apt update

$ sudo apt upgrade

$ sudo apt install git # Install Git

$ sudo apt install python3-dev python3-pip python3-wheel \

python3-venv # Python 3 for dev

$ sudo apt install build-essential libpq-dev libxslt-dev \

libzip-dev libldap2-dev libsasl2-dev libssl-dev

Changes in Odoo 12
The CSS preprocessor changed from less to SASS. This means that less is
no longer required to run Odoo. Odoo versions 9 to 11 require the less CSS
preprocessor.

If you need to work on Odoo versions up to 11, you will also need to install the less CSS
preprocessor:

$ sudo apt install npm # Install Node.js and its package
manager

$ sudo ln -s /usr/bin/nodejs /usr/bin/node # node runs Node.js

$ sudo npm install -g less less-plugin-clean-css # Install
less

48 Preparing the Development Environment

Installing Odoo from source
To keep things organized, we will work in a /work15 directory inside our home
directory. Throughout this book, we will assume that this is where all our Odoo code is.

Odoo 15 uses Python 3, specifically 3.6 or later. This means that on the system command
line, we should use python3 and pip3, instead of python and pip.

Changes in Odoo 11
Starting from version 11, Odoo runs on Python 3. Odoo 11 also works with
Python 2.7, but Odoo 12 only runs on Python 3.5+. Up to Odoo 10 only runs
on Python 2.7.

To install Odoo from source, we must start by cloning the Odoo source code directly
from GitHub:

$ mkdir ~/work15 # Create a directory to work in

$ cd ~/work15 # Go into our work directory

$ git clone https://github.com/odoo/odoo.git -b 15.0 \

--depth=1 # Get Odoo sources

The ~ symbol is a shortcut for the user's home directory, such as /home/daniel. If
you're using WSL on Windows 10, you can find this directory with the File Explorer by
opening \\wsl$. The full path to the working directory should be similar to \\wsl$\
Ubuntu-20.04\home\daniel\work15.

The -b 15.0 option in the Git command explicitly downloads the 15.0 branch of Odoo.
At the time of writing, this is redundant, since it is the default branch, but this may
change.

The --depth=1 option tells Git to download only the last revision, instead of the full
change history, making the download significantly smaller.

Tip
To download the missing commit history later, you can run git fetch
--unshallow. We can also just fetch the recent history. The git fetch
--depth=100 command will get the last 100 commits, while git fetch
--shallow-since=2020-01-01 will get all the commits since January
1, 2020.

Installing Odoo from source 49

Next, we should install the Python dependencies that are declared in the
requirements.txt file. The recommended approach is to do this inside a Python
virtual environment. Doing so protects your Odoo environment from possible changes
in the system-wide Python libraries. Another benefit is to be able to keep several virtual
environments, according to the particular needs of the projects you are working on, such
as using older versions of Odoo. Let's get started:

1. To create a new virtual environment, run the following command:

$ python3 -m venv ~/work15/env15

This will create a Python environment in ~/work15/env15.
2. We want to run all the Python code using ~/work15/env15/bin/python.

This command can confirm this, displaying the Python version that's been
installed there:

$ ~/work15/env15/bin/python -V

Python 3.8.10

3. It will be much more comfortable for us if we set this as the current default Python
interpreter. This can be achieved by activating the virtual environment:

$ source ~/work15/env15/bin/activate

Once we have activated the virtual environment, the prompt will change to include the
information of the active environment. In this case, it will change from $ to (env15) $.

We can run the which command to confirm that the correct Python interpreter is
being used:

(env15) $ which python

/home/daniel/work15/env15/bin/python

50 Preparing the Development Environment

To deactivate the virtual environment, simply run deactivate; the Python interpreter
will be the system default here as well:

$ deactivate

$ which python3

/usr/bin/python3

Make sure that you reactivate the virtual environment to continue with the following
instructions.

With the virtual environment activated, we can now install the Python dependencies
inside it:

$ source ~/work15/env15/bin/activate

(env15) $ pip install -U pip # Update pip

(env15) $ pip install -r ~/work15/odoo/requirements.txt

Note
Inside a virtual environment, the python and pip commands will point
to the correct version. This is not the case for your operating system, where
pip will point to Python 2 and pip3 will point to Python 3. If you need to
run these commands at the system-wide level, make sure to replace pip with
pip3, since Odoo uses Python 3.

Some of the Python libraries require system binaries to be installed. If some libraries
refuse to install, please confirm that the system dependencies are installed, as described in
the Installing the Odoo system dependencies section, earlier in this chapter.

We now have the Python library dependencies installed. However, we still need to install
Odoo itself. You can use pip for this:

(env15) $ pip install -e ~/work15/odoo

Installing Odoo from source 51

The -e option is used to make a Python editable install. With this, the source code files
in the ~/work15/odoo directory will be used to run Odoo. Without this option, the
installation process would copy the code files from the source directory into an internal
site-packages/ directory and run from those copies; they won't reflect changes or
updates to the source code.

Running Odoo
To run Odoo, first, make sure you have the corresponding virtual environment activated:

$ source ~/work15/env15/bin/activate

Inside a virtual environment, simply run Odoo to start an instance:

(env15) $ odoo --version

Odoo Server 15.0

The odoo command is a convenient shortcut, and we will use it throughout this
book. It is still worth knowing that we can start an Odoo server instance by calling the
corresponding executable directly:

(env15) $ ~/work15/odoo/odoo-bin --version

For full control, we can run Odoo from a specific source, using a specific Python
executable, without depending on virtual environment activation:

$ ~/work15/env15/bin/python ~/work15/odoo/odoo-bin –-version

If we run Odoo without the --version option, it will keep running, waiting for
client calls.

The Odoo default listening port is 8069. To reach the Odoo service from a web browser,
we should use the URL http://localhost:8069.

To stop the server and return to the command prompt, press Ctrl + C.

52 Preparing the Development Environment

Creating a new database from the web client
When we access Odoo for the first time, since there are no databases available yet, we
should go to an assistant to create a new database. Under the default configuration, Odoo
should be available at http://localhost:8069:

Figure 2.1 – Database creation form

Installing Odoo from source 53

The information that's been requested for this database creation form is as follows:

• Master Password is the database manager password and is stored in the Odoo
configuration file. Recent Odoo versions generate one automatically, as shown in
the preceding screenshot.

• Database Name is the identifier name to use for the database. The same database
server may host several Odoo databases, each with a unique identifier name.

• Email is the login username to use for the default administrator user. It doesn't have
to be an actual email address. The default value is admin.

• Password is the secret password to log in as an administrator.

• Language is the default language to use for the database.

• Country is the country to use for the company's default settings. It is optional and is
relevant for localization features in some apps, such as Invoicing and Accounting.

• The Demo data checkbox, when enabled, also installs the demonstration data,
instead of starting with an empty database. This is usually desirable for development
and test environments.

A master password field might also be asked for if one was set in the Odoo server
configuration. This allows you to prevent unauthorized people from performing these
administrative tasks. But it is not set by default, so you probably won't be asked for it.

Note
Be aware that the admin and master passwords are different concepts. The
master password gives access to the database manager features, allowing you
to back up, restore, and duplicate Odoo databases. The admin password is for
the admin default user login, giving them access to the Odoo database settings
and user management.

After clicking the Create database button, the new database will be created and initialized,
a process that can take a couple of minutes. Once it's ready, you will be redirected to the
login screen.

The database manager can be accessed from the login screen, from Manage databases
at the bottom. The database manager shows the list of available databases and options to
back up, duplicate, or delete them, as well as the ability to create new ones.

The database manager can also be directly accessed at http://localhost:8069/
web/database/manager.

54 Preparing the Development Environment

Note
The database manager allows for privileged administration operations, and
by default, it is enabled and unprotected by a password. While convenient,
this can be a security risk. Consider setting a strong master password, or even
better, disabling the database manager feature. The master password is set in
the Odoo configuration file, with an entry of admin_passwd = <your-
complex-password>. To disable the database manager, add the list_
db = False setting. See the Configuring the Odoo server options section for
more details on configuration files.

Creating a new database from the command line
As developers, we will need to work with several databases. It is more convenient to create
them from the command line.

If the terminal window has Odoo running, press Ctrl + C to stop it and go back to the
command prompt.

To create and initialize an Odoo database, run the Odoo server using the -d option:

(env15) $ odoo -d 15-demo --stop-after-init

It may take a minute to initialize the 15-demo database; it will return to the command
prompt once finished.

If we omit the --stop-after-init option, the Odoo service will keep running once
the database is ready. In this case, have a close look at the log messages to find an INFO
log line with the Modules loaded message. This signals that the database startup was
completed and that it is now ready to accept client calls. Note that it might not be the last
log message and that it can be in the last three or four lines.

By default, new databases are initialized with demonstration data, which is often useful
for development databases. This is the equivalent of having the Load demonstration data
checkbox ticked when creating a new database from the user interface.

To initialize a database without demonstration data, add the --without-demo=all
option to the odoo command.

To be able to create a new database, the user running Odoo must be a PostgreSQL
superuser. If this is not the case, check the PostgreSQL setup script in the Installing Odoo
from source section.

Managing Odoo databases 55

Tip
For a development environment, it is fine for the user running the Odoo
instance to be a database superuser. But for a production environment, Odoo
security best practices state running the Odoo service with a user that is not a
database superuser.

We now have a running Odoo instance and a database to work with. Opening the
http://localhost:8069 URL with a web browser should present us with the Odoo
login screen.

If you're not sure about the server name and port to use in the URL, look that up in the
Odoo service log messages. One of the first log messages in the startup sequence contains
that information. It should look like this:

INFO ? odoo.service.server: HTTP service (werkzeug) running on
MYMACHINE:8069

On Linux, you can also use the hostname command to find the server's name, or use the
ifconfig command to find the IP address.

The default Odoo administrator account is admin, with a password of admin. Once
logged in, if no application has been installed in the database yet, we will be presented
with the Apps menu, displaying the applications available for installation.

To stop the Odoo server instance and return to the command line, press Ctrl + C on the
terminal window running the server. Pressing the up arrow key will bring up the previous
shell command, so it's a quick way to start Odoo again with the same options. The Ctrl +
C keys, followed by the up arrow key and Enter, is a frequently used combination to restart
the Odoo server during development.

At this point, Odoo should be installed on our system and ready to work, and we even
have a database with an Odoo instance ready to work with. Next, we will learn how to
manage databases, create new ones, and remove those we don't need anymore.

Managing Odoo databases
In the previous section, we learned how to create and initialize new Odoo databases from
the command line. There are more commands worth knowing about to manage Odoo
databases.

56 Preparing the Development Environment

The Odoo server automatically creates the new PostgreSQL database for us. But we can
also do that manually using the following command:

$ createdb MyDBName

This command can be used with the --template option to copy a database. The copied
database can't have open connections for this to work. So, make sure that any Odoo
instance using it has been stopped.

Tip
When running PostgreSQL in WSL, it may be the case that some operations
display a message such as WARNING: could not flush dirty
data: Function not implemented. A workaround for this is to
modify the PostgreSQL configuration file. For version 12, it should be at
/etc/postgresql/12/main/postgresql.conf. Edit it at
add two lines, fsync = off and data_sync_retry = true.
Then, restart the PostgreSQL server using sudo server posgresql
restart.

To copy a MyDBName original database to a MyDBCopy database, use the following
command:

$ createdb --template=MyDBName MyDBCopy

To list the existing databases, use the PostgreSQL psql utility with the -l option:

$ psql -l

This lists the databases we have created so far. If you followed the previous commands,
you should see MyDBName and MyDBCopy listed. The list will also display the encodings
that were used in each database. The default is UTF-8, which is the encoding that's
needed for Odoo databases.

To remove a database you no longer need (or want to recreate), use the dropdb
command:

$ dropdb MyDBCopy

These are the basics of working with databases. To learn more about PostgreSQL, refer
to the official documentation at http://www.postgresql.org/docs/. The psql
documentation page can be found at https://www.postgresql.org/docs/12/
app-psql.html.

http://www.postgresql.org/docs/
https://www.postgresql.org/docs/12/app-psql.html
https://www.postgresql.org/docs/12/app-psql.html

Configuring the Odoo server options 57

Warning
The dropdb command will irrevocably destroy your data. Be careful when
using it and always keep backups of important databases before using this
command.

We now have Odoo running and know how to manage database instances for our project
or experiment needs. However, we still need to learn about the most relevant Odoo server
configuration options, and how to conveniently store them in configuration files.

Configuring the Odoo server options
The Odoo server supports several options. To see all the available options, use --help:

(env15) $ odoo --help

We will review the most relevant options in the following sections. Let's start by looking at
how to use configuration files.

Odoo server configuration files
Most of the options can be saved in a configuration file. By default, Odoo will use the
.odoorc file. In Linux systems, the default location is in the home directory ($HOME),
while in the Windows distribution, it is in the same directory as the Odoo executable.

Note
In older Odoo/OpenERP versions, the name for the default configuration file
was .openerp-serverrc. For backward compatibility, Odoo will still use
this if it's present and no .odoorc file is found.

In a clean installation, the .odoorc configuration file is not automatically created. We
should use the --save option to create the default configuration file, if it doesn't exist
yet, and store the current instance configuration in it:

(env15) $ odoo --save --stop-after-init

The --stop-after-init option we've used here stops the Odoo server after it finishes
running through its actions.

58 Preparing the Development Environment

Note
Command options can be shortened, so long as they remain unambiguous. For
example, the --stop-after-init option can be shortened to --stop.

Now, we can inspect what was saved in this default configuration file:

$ cat ~/.odoorc # show the configuration file

This will show all the available configuration options, along with their default values.
Editing them will be effective the next time you start an Odoo instance. Type q to quit and
go back to the prompt.

To start Odoo using a specific configuration file, use the --conf=<filepath> option
or the equivalent -c <filepath> short notation.

For example, the following command creates a new 15-demo.conf configuration file in
the ~/work15 directory:

(env15) $ odoo -c ~/work15/15-demo.conf --save --stop

The following command starts an Odoo server using it:

(env15) $ odoo -c ~/work15/15-demo.conf

Changing the listening port
The Odoo server uses the 8069 port by default. To use a different port, we can use the
--http-port=<port> option, or just the -p <port> short form. This is useful for
running more than one instance at the same time, on the same machine.

Changed since Odoo 11
The --http-port server option was introduced in Odoo 11 and replaces
the old --xmlrpc-port option, which was used in previous versions.

Let's try this out. Open two terminal windows. In the first, run the following command:

$ source ~/work15/env15/bin/activate

(env15) $ odoo --http-port=8070

Configuring the Odoo server options 59

In the second terminal, run the following command:

$ source ~/work15/env15/bin/activate

(env15) $ odoo --http-port=8071

Now, there are two Odoo instances in the same server, listening on different ports. These
two instances can use the same or different databases, depending on the configuration
parameters used, and the two could be running the same or different versions of Odoo.

Tip
Different Odoo versions must work with different databases. Trying to use the
same database with different Odoo versions won't work, since major versions
have incompatible database schemas.

Filtering the list of accessible databases
The --database, or -d, option sets the database to use by the Odoo server instance.
All the calls for that server will use that database, and any calls destined for a different
database will be rejected. This can happen when the Odoo server is restarted to use a
different database, and there are web browser windows open still with sessions using the
previous database.

The same Odoo server can serve several databases. This is the default behavior when no
database is selected (the --database option is not set, neither in the command options,
the configuration file, nor the default ~/.odoorc configuration). In this case, a new web
browser session will open the database manager page, allowing us to select the database
we want to work with.

If we don't set a specific database to work with, then all the existing databases will be
available. Using the --db-filter option limits the databases that are made available by
the Odoo server.

The --db-filter value can either be a comma-separated list of database names or a
regular expression. For example, the expression for filtering to the 15-demo name is as
follows:

(env15) $ odoo --db-filter=^15-demo$

60 Preparing the Development Environment

The following are some examples of useful regular expressions:

• To filter names starting with some text, use the ^ prefix. For example, ^15 filters all
names starting with 15.

• To filter names ending with some text, use the $ suffix. For example, demo$ filters
all names ending with demo.

• To filter exact matches, combine the ^ prefix with the $ suffix. For example,
^15-demo$ matches only the 15-demo database name.

• To filter an optional single character, use .. For example, ^15-demo.$ matches
15-demo, 15-demo1, 15-demo2, and so on.

• To filter an optional sequence of characters, use .*. For example, ^15.*demo$
matches 15-emo, 15-demo, or 15-this-is-a-demo.

Managing server log messages
By default, Odoo prints the server log messages to standard output, so they are printed out
to the terminal window.

Here is an example log line:

2021-11-08 08:06:57,786 18592 INFO 15-demo odoo.modules.
loading: Modules loaded.

Each log line follows a structure containing these columns:

• 2021-11-08 08:06:57,786: Date and time timestamp of the log message,
using UTC, not local time.

• 18592: PID, the system process ID.

• INFO: Message log level.

• 15-demo: Database name. It is ? for actions that have not been performed in the
context of a particular database.

• werkzeug: Odoo module posting the message. For example, odoo.modules.
loading is used for the module loading actions.

The remaining text is the log message's content.

Configuring the Odoo server options 61

The message text has a particular structure for HTTP requests and is handled by the
werkzeug module. Here is an example:

2021-11-08 08:06:57,786 18592 INFO 15-demo werkzeug: 127.0.0.1
- - [08/Apr/2020 08:06:57] "POST /web/dataset/call_kw/res.
partner/read HTTP/1.1" 200 - 213 0.135 0.092

Here, we can see the details about the HTTP request that was made, including its source
IP address, the endpoint that was called, and the HTTP status code.

We can also see performance information, which was added to the end of the text
message: the three last numbers. In this example, this is 213 0.135 0.092. These
performance numbers tell us the following:

• The query count, which is the number of SQL queries that have been executed

• The time spent running SQL queries

• The remaining time spent on anything except SQL (this should mainly be Python
code)

For logging, there are two settings we can control – where the log output should be
printed to and what the log verbosity should be.

The --log-level option allows us to set the log verbosity. By default, it is set to the
info level.

To lower the log verbosity, set the log level to any of the following:

• warn to display only warnings and errors

• error to display only errors

• critical to display only errors that prevent the server from functioning

Increasing the log level can be helpful to understand some issues with the server. The
following more verbose log levels are available:

• debug enables debug-level log messages.

• debug_sql displays the SQL queries that have been executed.

• debug_rpc shows the details of the RPC requests that have been received.

debug_rpc_answer shows details about the RPC answers that have been sent back to
the client.

62 Preparing the Development Environment

Try out these different log levels by adding the parameter to the server start command, as
in the following example:

(env15) $ odoo --log-level=debug_sql

Then, browse through the web client and check the server log's output to see the
differences.

The --log-handler option allows you to refine the logging verbosity for specific
modules. Its usage follows the format of --log-handler=MODULE1:LEVEL,
MODULE2:LEVEL,.... One way to find or confirm the module's name to use is to check
existing messages that have been written to the log. The log level can be either DEBUG,
INFO, WARN, ERROR, or CRITICAL (in uppercase).

For example, to increase the module loading log messages to debug, use this command:

(env15) $ odoo --log-handler=odoo.modules:DEBUG

To reduce the HTTP request handling verbosity, use this command:

(env15) $ odoo --log-handler=werkzeug:WARN

Regarding where the log output is sent, by default, it is directed to standard
output (your console screen), but it can be directed to a log file. For this, the
--logfile=<filepath> option can be used, like so:

(env15) $ odoo –logfile=~/work15/odoo.log

Note
In Linux systems, the expected location of a log file is inside /var/log. So,
Odoo log files can be frequently found inside /var/log/odoo/.

We now know how to control our Odoo instances and the most important server options,
which means we can start doing some serious work with it. We can benefit from the many
community-provided Odoo modules available, so a key skill to learn is how to make these
modules available in our Odoo instances.

Finding and installing additional modules 63

Finding and installing additional modules
The Odoo ecosystem has a rich community where many modules are available. Installing
new modules in an Odoo instance is something that newcomers frequently find
confusing. But it doesn't have to be.

Finding community modules
The Odoo Apps store at https://apps.odoo.com is a catalog of modules that can be
downloaded and installed on your system.

Another important resource is the Odoo Community Association (OCA), which hosts
community-maintained modules. These modules are hosted on GitHub, at https://
github.com/OCA, and a searchable index is also provided at https://odoo-
community.org/shop.

The OCA is a non-profit organization that was created to coordinate community
contributions, promote software quality, development best practices, and open source
values. You can learn more about the OCA at https://odoo-community.org.

To add a module to an Odoo installation, we could just copy it into the addons directory,
alongside the official modules. In our case, the add-ons directory would be located at
~/work15/odoo/addons/. However, this is not a good idea. Our Odoo installation
is a Git version-controlled code repository, and we want to keep it synchronized with
the upstream GitHub repository. Polluting it with foreign modules will make it hard to
manage.

Instead, we can select additional locations for modules, which the Odoo server will also
look into. Not only can custom modules be separated from the Odoo add-ons directory,
but they can also be organized into several directories.

Let's try this now with this book's code, available in GitHub, by making those add-on
modules available in our Odoo installation. To get the source code from GitHub, run the
following commands:

$ cd ~/work15

$ git clone https://github.com/PacktPublishing/Odoo-15-
Development-Essentials.git library

This changes the working directory to ~/work15 and downloads the code from this
book's GitHub repository into the library/ subdirectory. Next, Odoo needs to know
about this new module directory.

https://apps.odoo.com
https://github.com/OCA
https://github.com/OCA
https://odoo-community.org/shop
https://odoo-community.org/shop
https://odoo-community.org

64 Preparing the Development Environment

Configuring the add-ons path
The Odoo addons_path configuration option lists the directories where the server
should look for modules. By default, this points to two directories – one for the server's
internal code, containing the base module, and the other for the add-ons directory, which
contains the standard modules and apps. For the setup followed in this chapter, this is
~/work15/odoo/odoo/addons,~/work15/odoo/addons.

Let's start the server with an add-ons path that includes our new module directory:

$ cd ~/work15

$ source env15/bin/activate

(env15) $ odoo -d 15-library --addons-path="./library,./odoo/
addons"

Here, we are making sure that we are in our work directory and that the Python virtual
environment is activated. Then, Odoo is started with two options – the database name to
be used by Odoo, 15-library, and the add-ons directories to use. For shorter notations,
we use relative paths.

When the server starts, have a close look at the first few lines of the log. There should be a
log message reporting the add-ons path being used, similar to INFO ? odoo: addons
paths: [...]. Confirm that it contains the library/ directory:

Figure 2.2 – The Odoo startup sequence log messages with the add-ons path used

We now know how to add third-party modules to our Odoo instances, and want to start
developing our own modules. There are a few Odoo server options aimed at making
development easier. It's good to know about them before we start coding.

Using the server development options
Odoo also provides a server-side development mode, which can be enabled by using the
--dev=all option.

Odoo commands quick reference 65

Development mode enables features to speed up the development cycle:

• Changes to Python code are automatically reloaded when a code file is saved,
avoiding a manual server restart.

• Changes to View definitions have an instant effect, avoiding manual module
upgrades (note that a browser page reload is still needed).

The --dev=all option will bring up the pdb Python debugger when an exception
is raised. It is useful for doing a postmortem analysis of a server error. More details on
the Python debugger commands can be found at https://docs.python.org/3/
library/pdb.html#debugger-commands.

The --dev option accepts a comma-separated list of options, although the all option
will be suitable most of the time. By default, the Python debugger, pdb, is used. This
debugger is a bit terse, and other options are available. The supported external debuggers
are ipdb, pudb, and wpdb.

To use the automatic reload feature, when changes to code files are detected, the
watchdog Python package must be installed:

(env15) $ pip install watchdog

The use of debuggers will be addressed in detail in Chapter 8, Business Logic – Supporting
Business Processes.

Odoo commands quick reference
Here is a quick reference for the most important Odoo commands:

• -c,--conf=my.conf: Sets the configuration file to use.

• --save: Saves the config file.

• --stop,--stop-after-init: Stops after module loading.

• -d,--database=mydb: Uses this database.

• --db-filter=^mydb$: Filters the databases that are available using a regular
expression.

• -p,--http-port=8069: The database port to use for HTTP.

• -i,--init=MODULES: Installs the modules in a comma-separated list.

• -u,--update=MODULES: Updates the modules in a comma-separated list.

https://docs.python.org/3/library/pdb.html#debugger-commands
https://docs.python.org/3/library/pdb.html#debugger-commands

66 Preparing the Development Environment

• --log-level=debug: The log level. Examples include debug, debug_sql,
debug_rpc, debug_rpc_answer, and warn. Alternatives for debugging specific
core components are as follows:

 � --log-sql: Debugs SQL calls

 � --log-request: Debugs HTTP request calls

 � --log-response: Debugs responses to HTTP calls

 � --log-web: Debugs HTTP request responses

• --log-handler=MODULE:LEVEL: Sets the log level for a specific module. The
following are examples:

 � --log-handler=werkzeug:WARN

 � --log-handler=odoo.addons:DEBUG

• --logfile=<filepath>: Sends the log to a file.

• --dev=OPTIONS: Options include all, [pudb|wdb|ipdb|pdb], reload, qweb,
werkzeug, and xml.

Summary
In this chapter, we learned how to set up an Ubuntu system to host Odoo and install it
from the GitHub source code. We also learned how to create Odoo databases and run
Odoo instances.

You should now have a functioning Odoo environment to work with and be comfortable
with managing databases and instances.

With this in place, we're ready to jump straight into the action. In the next chapter, we will
create our first Odoo module from scratch and understand the main elements it involves.

3
Your First Odoo

Application
Developing in Odoo usually means creating our own modules. In this chapter, we will
create our first Odoo application, learn the steps needed to make it available to Odoo, and
install it.

We will get started by learning the basics of the development workflow—we'll create
and install a new module and update it to apply the changes we make throughout the
development iterations.

Odoo follows a Model-View-Controller (MVC)-like architecture, and we will go through
the different layers to implement a library application.

In this chapter, we will cover the following topics:

• Overview of the library project

• Step 1 – Creating a new addon module

• Step 2 – Creating a new application

• Step 3 – Adding automated tests

• Step 4 – Implementing the model layer

• Step 5 – Setting up access security

68 Your First Odoo Application

• Step 6 – Implementing the backend view layer

• Step 7 – Implementing the business logic layer

• Step 8 – Implementing the website user interface (UI)

With this approach, you will be able to gradually learn about the basic building blocks that
make up an application and experience the iterative process of building an Odoo module
from scratch.

Technical requirements
This chapter requires you to have an Odoo server installed and be able to start it from
the command line to perform actions such as installing modules or running tests. If you
don't have a working Odoo development environment, make sure you review Chapter 2,
Preparing the Development Environment.

In this chapter, we will create our first Odoo application from a blank slate, so we won't
need any additional code to get started.

The code for this chapter can be found in the book's GitHub repository at https://
github.com/PacktPublishing/Odoo-15-Development-Essentials, in the
ch03 directory.

Overview of the library project
We will use a learning project to better explore the topics explained in this chapter, and
see them work in practice. We will create a new Odoo app to manage a book library. We
will use this project in all the following chapters, where each chapter will be an iteration,
adding features to the app. Here, we will create a first iteration of the library app.

The first feature we will implement will be the book catalog. The catalog allows us to keep
records of the books in our library, with their relevant details. We also want to make this
catalog available through a public website, where the available books can be seen.

Library books should have the following data:

• Title

• Authors

• Publishing company

• Date published

• Cover image

https://github.com/PacktPublishing/Odoo-15-Development-Essentials
https://github.com/PacktPublishing/Odoo-15-Development-Essentials

Step 1 – Creating a new addon module 69

• International Standard Book Number (ISBN), with check digit validation

• Active flag, indicating the books that should be publicly available on the website

As is usual for the Odoo base apps, the Library app will have two user groups, the
Library User and the Library Manager. The User level is expected to be able to perform
all daily operations, and the Manager level is expected to additionally be able to edit the
app's configurations.

For the book catalog feature, we will keep editing book records as a reserved feature for
Managers. The following should apply:

• Library Managers should be able to edit books.

• Library users and Public users using the website should be able to only view books.

This simple project will allow us to cover all the main components involved in building
an Odoo app. The first step is to create a module directory that will host the code and
components for our app.

Step 1 – Creating a new addon module
An addon module is a directory containing files that implement some Odoo features. It
can add new features or modify existing ones. The addon module directory must contain a
manifest file—or descriptor file—named __manifest__.py.

Some module addons are featured as an app. Apps are the top-level module for a feature
area in Odoo, and we expect our module to be featured in the top-level Apps menu.
Examples of apps in base Odoo include CRM, Project, and HR. A non-app module
addon is expected to depend on an app, adding or extending features to it.

If a new module adds new or major functionality to Odoo, it probably should be an
app. If the module just makes changes to an existing app, it probably should be a regular
addon module.

To develop a new module, we will do the following:

1. Ensure that the directory where we will work is in the Odoo server addons path.
2. Create the module's directory, containing the manifest file.
3. Choose a license for the module, if we intend to distribute it.
4. Add a module description.
5. Optionally, add an icon to represent the module.

70 Your First Odoo Application

After this, we can install the module to confirm that it is available to the Odoo server and
that it installs correctly.

Preparing the addons path
An addon module is a directory containing an Odoo manifest file providing features,
such as a new app or additional features for an existing app. An addons directory
contains several addon modules. The addons path is an Odoo configuration, with a list of
directories where the Odoo server will look for available addons.

By default, the addons path includes the base apps bundled with Odoo, in the odoo/
addons directory, and the base module providing the core features, in the odoo/odoo/
addons directory. The addons path is usually modified to add one or more directories for
the custom-developed and community modules we want to use.

The Library project will be composed of several modules. Doing so is a good practice
since it promotes smaller more focused modules, helping reduce complexity. We will
create an addons directory for the project's modules.

If the instructions in Chapter 2, Preparing the Development Environment, were followed,
the Odoo server code should be at ~/work15/odoo/. Custom addon modules should
be kept in their own directory, separate from the Odoo code.

For the Library, we will create a ~/work15/library directory and include it in the
addons path. We can do this by editing the configuration file directly or by using the Odoo
command-line interface (CLI). Here is how to do the latter:

$ mkdir ~/work15/library

$ source ~/work15/env15/bin/activate

(env15) $ odoo \

--addons-path="~/work15/library,~/work15/odoo/addons" \

-d library -c ~/work15/library.conf --save --stop

Right now, the Odoo command will return an error such as this: odoo: error:
option --addons-path: no such directory: '/home/daniel/work15/
library'. This is because the directory is still empty, and Odoo is not able to find any
addon module inside it. We won't have this problem as soon as the skeleton for the first
Library app module is created.

Step 1 – Creating a new addon module 71

Here's an explanation of the options used in the Odoo command:

• The --addons-path option sets a list of all the directories to use for Odoo modules.

• The --d or --database option sets the database name to use. If the database
doesn't exist, it will be created and initialized with Odoo's basic database schema.

• The --c or --config option sets the configuration file to use.

• The --save option used along with -c saves the options used in the
configuration file.

• The --stop option, short for --stop-after-init, stops the Odoo server and
returns to the command line once all actions are done and the start sequence is done.

If relative paths are used for the addons path option, Odoo will convert them to absolute
paths before storing them in the configuration file.

Changes in Odoo 15
The configuration file created will use the default configuration as a template.
In Linux systems, the default configuration file is the one at ~/.odoorc.

The Odoo scaffold command provides a quick way to create a new module skeleton.
We can use it to populate the library addons directory with a valid module. To scaffold
the library_app module directory, execute this code:

(env15) $ odoo scaffold library_app ~/work15/library

The scaffold command expects two arguments—the module directory name and
the path where to create it. For more details on the scaffold command, run odoo
scaffold --help.

Now, we can retry the command to save the configuration file, including the ~/work15/
library/ addons directory, and it should run successfully now.

The startup sequence's first log messages summarize the settings being used. They include
an INFO ? odoo: Using configuration file at... line identifying the
configuration file being used and an INFO ? odoo: addons paths: [...] line
listing the addons directories being considered. These are the first things to check when
troubleshooting why Odoo is not discovering your custom module.

72 Your First Odoo Application

Creating a module directory
Following the previous section, we should now have the ~/work15/library directory
for our Odoo modules and have included it in the Odoo addons path so that the Odoo
server will be able to find modules in it.

In the previous section, we also used the Odoo scaffold command to automatically
create a skeleton structure for the new library_app module directory, with a basic
structure already in place. Remembering the scaffold command, it looks like this:
odoo scaffold <module> <addons-directory>. The module directory created
looks like this:

library_app/

├── __init__.py

├── __manifest__.py

├── controllers

│ ├── __init__.py

│ └── controllers.py

├── demo

│ └── demo.xml

├── models

│ ├── __init__.py

│ └── models.py

├── security

│ └── ir.model.access.csv

└── views

 ├── templates.xml

 └── views.xml

The module directory name is its technical name. In this case, we used library_app
for it. The technical name must be a valid Python identifier (ID)—it should begin with a
letter and can only contain letters, numbers, and the underscore character.

It contains several subdirectories for the different components of the module. This
subdirectory structure is not required, but it is a widely used convention.

A valid Odoo addon module directory must contain a __manifest__.py descriptor
file. It also needs to be Python-importable, so it must also have an __init__.py file.
These are the two first files we see in the directory tree.

Step 1 – Creating a new addon module 73

Tip
In older Odoo versions, the module manifest file was named __
openerp__.py. This filename is still supported but is deprecated.

The manifest file contains a Python dictionary, with the attributes describing the module.
The scaffold's automatically generated manifest file should be similar to this:

{

 'name': "library_app",

 'summary': """

 Short (1 phrase/line) summary of the module's

 purpose, used as subtitle on modules listing or

 apps.openerp.com""",

 'description': """

 Long description of module's purpose

 """,

 'author': "My Company",

 'website': "http://www.yourcompany.com",

 # Categories can be used to filter modules in modules

 # listing

 # Check https://github.com/odoo/odoo/blob/15.0/

 # odoo/addons/base/data/ir_module_category_data.xml

 # for the full list

 'category': 'Uncategorized',

 'version': '0.1',

 # any module necessary for this one to work correctly

 'depends': ['base'],

 # always loaded

 'data': [

 # 'security/ir.model.access.csv',

 'views/views.xml',

 'views/templates.xml',

],

 # only loaded in demonstration mode

 'demo': [

 'demo/demo.xml',

],

}

74 Your First Odoo Application

The next section will discuss the manifest file in more detail.

The __init__.py module file should trigger the import of all the module's Python files.
More specifically, it should import the Python files at the module top level and import the
subdirectories also containing Python files. Similarly, each of these subdirectories should
also contain an __init__.py file, importing the Python assets in that subdirectory.

This is the top __init__.py file generated by the scaffold command:

from . import controllers

from . import models

There are no Python files at the top level, and two subdirectories with Python files,
controllers, and models. Reviewing the module tree, we can see that these two
directories contain Python files and an __init__.py file each.

Creating a manifest file
The scaffold command prepared a manifest file that can be used as a guideline, or we
can create a manifest file from an empty file.

The manifest file should be a valid Python file containing a dictionary. None of the
possible dictionary keys is required, so an empty dictionary, {}, would be a valid content
for the file. In practice, we want to at least provide some basic description of the module,
assert authorship, and choose a distribution license.

The following should be a good starting point:

{

 "name": "Library Management",

 "summary": "Manage library catalog and book lending.",

 "author": "Daniel Reis",

 "license": "AGPL-3",

 "website": "https://github.com/PacktPublishing"

 "/Odoo-15-Development-Essentials",

 "version": "15.0.1.0.0",

 "depends": ["base"],

 "application": True,

}

Step 1 – Creating a new addon module 75

The keys used here provide all the data presented in the main tab of the app form, as
illustrated in the following screenshot:

Figure 3.1 – Library Management module app form

We used the following keys:

• name: For the module title.

• summary: For a one-line summary of the purpose of the module.

• author: For the name of the copyright author. It is a string but can contain a
comma-separated list of names.

• license: This identifies the license under which the author allows the module to
be distributed. AGPL-3 and LGPL-3 are popular open source choices. Proprietary
modules sold through the Odoo Apps Store usually use the OPL-1 Odoo
proprietary license. Licenses are discussed in more detail later in this chapter.

• website: A Uniform Resource Locator (URL) to get more information about the
module. This can help people find more documentation or the issue tracker to file
bugs and suggestions.

76 Your First Odoo Application

• version: The version of the module. It should follow semantic versioning rules
(see http://semver.org/ for details). It is a good practice to use the Odoo
version before our module version since it helps identify the Odoo version the
module targets. For example, a 1.0.0 module built for Odoo 15.0 should carry
version 15.0.1.0.0.

• depends: A list of the addon modules it depends on. The installation of this
module will trigger the installation of these dependencies. If the module has no
particular dependencies, it is a common practice to have it depend on the base
module, but this is not required.

• application: A flag, declaring whether the module should be featured as an app
in the apps list. Most extension modules, adding features to existing apps, will have
this set to False. The Library management module is a new app, so we used True.

The dependencies list is something to be careful about. We should ensure all dependencies
are explicitly set here; otherwise, the module may fail to install in a clean database install
due to missing dependencies or have loading errors if, by chance, the other required
modules are loaded later than ours, in the Odoo startup sequence. Both these cases can
happen when deploying your work on other machines and can be time-consuming to
identify and solve.

The <div class="document"> line seen in Figure 3.1 is for the long module
description, now empty. Adding a description is discussed in a later section, Adding
a description.

These other descriptor keys are also available, and used less often:

• installable: Indicates if this module is available for installation. The default
value is True, so we don't need to explicitly set it. It can be set to False if for some
reason we need to disable it but still keep its files in the addon directory.

• auto_install: This can be set to True, and is used for glue modules. A glue
module installation is triggered once all the dependencies are installed. For
example, this can be used to automatically provide features that bridge two apps,
once they are both installed in the same instance.

Setting the module category
Modules are grouped into categories, representing the function areas they relate to. These
categories are used to group addon modules, and also the security groups.

If no category is set on the addon, the Uncategorized value will be assigned. This is right
now the category for the Library app.

http://semver.org/

Step 1 – Creating a new addon module 77

We can see several categories on Odoo in the Apps menu, on the left side panel.
There, we can see the categories that can be used for our modules, as illustrated in the
following screenshot:

Figure 3.2 – Apps list with the CATEGORIES pane

The categories can have a hierarchy—for example, the Project apps belong to the
Services/Project category.

If a non-existent category is used on an addon module, Odoo will automatically create
it and make it available. We will take advantage of this to create a new category for the
Library app: Services/Library.

Edit the __manifest__.py file thus to add a category key:

 "category": "Services/Library",

Categories are also relevant for organizing security groups, and to reference them in
Extensible Markup Language (XML) data files, we will need to use the corresponding
XML ID.

The XML ID assigned to a module category is automatically generated from the base.
module_category_ prefix plus the category name. For example, for Services/Library,
the generated XML ID is base.module_category_services_library.

78 Your First Odoo Application

We can confirm the XML ID for app categories by navigating to the corresponding form
view and then using the View Metadata option in the developer menu.

There is no menu item for app categories, but the category form can be accessed from the
security Groups form, as follows:

1. Open the Settings | User | Groups menu option and create a new test record.
2. Select an option from the Application field drop-down list, and save. The process is

illustrated in the following screenshot:

Figure 3.3 – Application selection list, in the User Group form

3. Click on the Application link to open the selected category's corresponding
details form.

4. On the category form, select the View Metadata option in the developer menu to
see the XML ID assigned to it.

5. You may want to delete the test group if it is no longer of use to you.

Alternatively, the list of built-in categories and their XML IDs can be found in the Odoo
source code. The GitHub URL is provided here: https://github.com/odoo/odoo/
blob/15.0/odoo/addons/base/data/ir_module_category_data.xml.

https://github.com/odoo/odoo/blob/15.0/odoo/addons/base/data/ir_module_category_data.xml
https://github.com/odoo/odoo/blob/15.0/odoo/addons/base/data/ir_module_category_data.xml

Step 1 – Creating a new addon module 79

Choosing a license
Choosing a license for your work is important, and you should carefully consider which is
the best choice for you, and its implications.

Software code is covered by copyright law, reserving to the authors the rights to use or
modify the work. This will usually mean you individually or the company you are working
for. For other parties to safely be allowed to use the work, they must have a license
agreement with the code authors.

If you want to make your code freely available, it needs to carry a license, stating what
other people are allowed to do with your code. Different licenses will state different terms.

The most-used licenses for Odoo modules are version 3 of the GNU's Not Unix (GNU)
Lesser General Public License (LGPL-3) and the Affero General Public License (AGPL-
3). Both allow you to freely distribute and modify the work, as long as the authors are
credited and the derived works are distributed under the same license conditions.

The AGPL is a strong open source license and requires online services using the code
to share the source code with their users. This license is popular among the community
because it forces derivative works to also be distributed under the AGPL terms. So, the
open sourced code can't be incorporated in a closed commercial solution, and the original
authors can benefit from the improvements made by other people.

The LGPL is more permissive than AGPL and also allows commercial modifications,
without the need to share the corresponding source code. This license is usually chosen
for web and system integration components, where solutions might contain components
under private licenses, or under terms incompatible with AGPL.

You can learn more about the GNU licenses at https://www.gnu.org/licenses/.

While you can sell GPL licensed apps, this is not a popular business model since the
license allows people to freely copy and distribute the code. For this reason, many
modules sold in the Odoo App Store prefer to use a proprietary license. Odoo proposes
the Odoo proprietary license, OPL-1, for this.

More details on Odoo licenses can be found at https://www.odoo.com/
documentation/user/legal/licenses/licenses.html.

https://www.gnu.org/licenses/
https://www.odoo.com/documentation/user/legal/licenses/licenses.html
https://www.odoo.com/documentation/user/legal/licenses/licenses.html

80 Your First Odoo Application

Adding a description
A description is a long text presenting the module features. The description text supports
the reStructuredText (RST) format to produce a rich text document.

You can learn more about RST here: https://docutils.sourceforge.io/rst.
html. The page includes a quick reference link that is worth bookmarking: https://
docutils.sourceforge.io/docs/user/rst/quickstart.html.

Here is a short sample of an RST document:

Title

=====

Subtitle

This is *emphasis*, rendered in italics.

This is **strong emphasis**, rendered in bold.

This is a bullet list:

- Item one.

- Item two.

One way to add a description is to use the description key in the module manifest.
Since chances are the description text will span multiple lines, it is best added inside triple
quotes, """, the Python syntax for multiline strings.

Source code published on websites such as GitHub is expected to include a README file,
for visitors to easily find an introduction to the module. So, instead of the description
manifest key, Odoo modules can have a README.rst or README.md file for the same
purpose. This file should be placed at the root of the module directory, alongside the __
manifest__.py file.

Another alternative is to provide a HyperText Markup Language (HTML) document
description file. Many modules distributed in the Odoo Apps Store choose to use this for
a richer visual presentation of the app's features. The index.html HTML file should
be located in the static/description/ module subdirectory. Page assets, such as
images and Cascading Style Sheets (CSS), should also be located in that same directory.

https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/docs/user/rst/quickstart.html
https://docutils.sourceforge.io/docs/user/rst/quickstart.html

Step 1 – Creating a new addon module 81

Note
For modules with the application key set to True, only the index.
html description will be used, and the description key is ignored.

Adding an icon
Modules can optionally have an icon representing them. In the case of modules creating
a new app, this is particularly important, since the app is expected to have an icon in the
Apps menu.

To add an icon, we need to add a static/description/icon.png file to the
module, with the icon to be used.

For the Library app project, we will reuse an icon from the Notes existing Odoo app and
copy it into the library_app/static/description directory.

From the command line, we would run the following:

$ cd ~/work15/library/library_app

$ mkdir -p ./static/description

$ cp ~/work15/odoo/addons/note/static/description/\

icon.png ./static/description/

Installing a new module
We now have a minimal addon module. It doesn't implement any features yet, but we can
install it to confirm that it is working properly so far.

To install a new module, we should start the server using both the -d and -i options. The
-d or --database option ensures that we are working with the correct Odoo database.
The -i or --init option accepts a comma-separated list of modules to install.

Changes in Odoo 11
When installing a new module, Odoo will automatically update the list of
available modules from the currently configured addons paths. This was not so
up to Odoo 10, where the module list needed to be manually updated before a
new addon module could be installed. The modules list is updated in the web
client, from the menu option in the Apps list.

82 Your First Odoo Application

For the Odoo environment prepared earlier in this chapter and having activated the
Python virtual environment, the following command installs the library_app module:

(env15)$ odoo -c ~/work15/library.conf -d library -i \

library_app

We added the -d library option to make sure that the correct database is selected for the
installation. It could be the case that this option was already defined in the configuration
file and is thus redundant. Even if that is the case, it is best to play safe and explicitly
declare the database to install on in the command.

Tip
Pay close attention to the server log messages to confirm that the module was
correctly found and installed. You should see an odoo.addons.base.
models.ir_module: ALLOW access to module.button_
install message and no warnings.

For the module installation to be possible, the addons directory where the module is in
should be known to the Odoo server. This can be confirmed by stopping and starting the
Odoo server and looking at the odoo: addons paths: log message printed during
the Odoo startup sequence.

If the module is not found, that is often because the addons path is incorrect. Double-
check that by taking a close look at the addons path being used.

Upgrading modules
Developing a module is an iterative process, with changes made on source files that are
then to be applied to Odoo.

This can be done from the graphical UI (GUI) by looking up the module in the Apps
list and clicking on the Upgrade button. This reloads the data files, applying the changes
made, and updates the database schema definitions. However, when the changes are only
in Python logic, the upgrade may not be sufficient. An Odoo server restart may be needed
to reload the changed Python code. When the module changes are both data files and
Python logic, both operations might be needed.

Step 1 – Creating a new addon module 83

In summary, the following applies:

• When modifying models or their fields, an upgrade is needed to apply the database
schema changes.

• When changing logic Python code, a restart is needed to reload the code files.

• When changing XML or comma-separated values (CSV) files, an upgrade is
needed to reapply the data in the files.

To avoid any confusion or frustration related to having code changes applied to Odoo, the
simplest solution is to restart the Odoo service with the module upgrade command after
the code changes are made.

In the terminal where the server instance is running, use Ctrl + C to stop it. Then, start the
server and upgrade the library_app module using the following command:

(env15)$ odoo -c ~/work15/library.conf -d library \

-u library_app

The -u option, --update in the long format, requires the -d option and accepts a
comma-separated list of modules to update. For example, we could use -u library_
app,mail. When a module is updated, all other installed modules depending on it are
also updated.

Pressing the up arrow key brings to you the previous command that was used. So, most of
the time, when repeating this action, you will find yourself using the Ctrl + C, up arrow,
and Enter key combination.

In recent Odoo versions, the --dev=all developer-friendly mode is available,
automating this workflow. When this option is used, changes to data files will instantly
be available to the running Odoo service, and Python code changes will trigger an
Odoo code reload. For more details on this option, please refer to the Using the server
development options section of Chapter 2, Preparing the Development Environment.

We now have a module directory ready to host the components that implement the app.
Since this is an app, and not a technical module adding a feature, we will start by adding a
few basic components expected for apps.

84 Your First Odoo Application

Step 2 – Creating a new application
Some Odoo modules create new applications, and others add features or modify existing
applications. While the technical components involved are about the same, an app is
expected to include a few characteristic elements. Since the Library module is a new app,
we should include them in our module.

An app is expected to have the following:

• An icon, to be presented in the app list

• A top-level menu item, under which all the app's menu items will be placed

• Security groups for the app so that it can be enabled only for users that need it,
and where access security will be set

The app icon is an icon.png file in the module's static/description/
subdirectory. This was done earlier, in the Adding an icon section.

Next, we will take care of the app's top-level menu.

Adding a top menu item
Since we are creating a new app, it should have a main menu item. On the Community
Edition (CE), this is shown as a new entry in the top-left drop-down menu. On the
Enterprise Edition (EE), it is shown as an additional icon in the App Switcher main menu.

Menu items are view components added using XML data files. To define a menu item,
create a views/library_menu.xml file with the following content:

<odoo>

 <!-- Library App Menu -->

 <menuitem id="menu_library" name="Library" />

</odoo>

The UI, including menu options and actions, has database stored records read and
interpreted by the web client in real time.

The aforementioned file describes records to load into the Odoo database. The
<menuitem> element is an instruction to write a record on the ir.ui.menu model,
where Odoo menu items are stored.

Step 2 – Creating a new application 85

The id attribute is also known as an XML ID and is used to uniquely identify each data
element, providing a way for other elements to reference it. For example, library submenu
items added later will need to reference their parent menu item, using the menu_
library XML ID.

The menu item added here is very simple and is using only one attribute: name. There are
other attributes available that we didn't use here. We will learn more about them later in
this chapter, in the Implementing the backend view layer section.

The Library module does not know about this new XML data file yet. To be known
and loaded into the Odoo instance, it needs to be declared in the data attribute of the
manifest file. Edit the __manifest__.py file dictionary to add this key, as follows:

 "data": [

 "views/library_menu.xml",

],

The data manifest key is a list of the data files to be loaded by the module upon
installation or upgrade. The file paths are relative to the module's root directory, where the
manifest file is.

To load these menu configurations into our Odoo database, we need to upgrade the
module. Doing that at this point won't have any visible effects. This menu item has no
actionable submenu yet, and so won't be shown. It will be visible later, once we add
submenus and the corresponding access permissions.

Tip
Items in the menu tree are only shown if there are any visible submenu items.
The lower-level menu items that open views will only be visible if the user has
access to the corresponding model.

Adding security groups
Before features can be used by regular users, access must be granted to them. In Odoo,
this is done using security groups. Access privileges are granted to security groups, and
users are assigned security groups.

Odoo apps typically provide two groups for two levels of access, as follows:

• A user access level, for users performing daily operations

• A manager access level, with full access to all features, including configurations

86 Your First Odoo Application

The Library app will feature these two security groups. We will work on this next.

Access-security-related files are usually kept in a security/ module subdirectory, so we
should create a security/library_security.xml file for these definitions.

Security groups are organized in the same categories used for addon modules. To assign
a category to a security group, we should find the corresponding XML ID. The way this
XML ID can be found was discussed earlier in this chapter, in the Setting the module
category section. There, we can learn that the XML ID for the Services/Library category is
base.module_category_services_library.

Next, we will add the Library User security group. It belongs to the Library category
defined previously, with an XML ID of module_library_category, and it will
inherit the internal user security permissions, building on top of them. If we open that
group's form and use the developer menu View Metadata option, we can see that its XML
ID is base.group_user.

Now, add to the security/library_security.xml file with the following XML:

<odoo>

 <data>

 <!-- Library User Group -->

 <record id="library_group_user" model="res.groups">

 <field name="name">User</field>

 <field name="category_id"

 ref="base.module_category_services_library "/>

 <field name="implied_ids"

 eval="[(4, ref('base.group_user'))]"/>

 </record>

 </data>

</odoo>

We have a lot going on here, so let's slowly go through each of the elements here. This
XML is adding one record to the groups model, res.groups. This record has values for
three fields, as follows:

• name is the group title. This is a simple string value.

• category_id is the related app. It is a relational field, so the ref attribute is used
to link it to the category created before, using its XML ID.

Step 2 – Creating a new application 87

• implied_ids is a one-to-many relational field and contains a list of groups that will
also apply to users belonging to this group. To-many fields use a special syntax that
is detailed in Chapter 5, Importing, Exporting, and Module Data. In this case, we are
using code 4 to add a link to the existing internal user XML ID, base.group_user.

Changes in Odoo 12
The User form has a User Type section, only visible when the Developer Mode
is enabled. It allows us to select between the mutually exclusive options—
Internal User, Portal (external users, such as customers), and Public (website
anonymous visitors). This was changed to avoid misconfigurations found in
previous Odoo versions, where internal users could accidentally be included in
the Portal or Public groups, effectively reducing their access privileges.

Next, we will create a manager group. It should give us all the privileges of the user group,
plus some additional access reserved to the manager. So, we want it to inherit from the
library_group_user library user.

Editing the security/library_security.xml file, add the following XML inside
the <odoo> element:

 <!-- Library Manager Group -->

 <record id="library_group_manager" model="res.groups">

 <field name="name">Manager</field>

 <field name="category_id"

 ref="base.module_category_services_library "/>

 <field name="implied_ids"

 eval="[(4, ref('library_group_user'))]"/>

 <field name="users"

 eval="[(4, ref('base.user_root')),

 (4, ref('base.user_admin'))]"/>

 </record>

Here, we also see the name, category_id, and implied_ids fields, as before. The
implied_ids field is set with a link to the Library user group, to inherit its privileges.

88 Your First Odoo Application

It is also setting values on the users field. This has this group assigned to the
Administrator (admin) and the Odoobot users.

Changes in Odoo 12
Since Odoo 12, we have a system root user, which is not shown in the user list
and is used internally by the framework when privilege elevation is needed
(sudo). The admin user can be used to log in to the server and should have full
access to all features but does bypass access security, as the system root does. On
Odoo versions up to 11, the admin user was also the internal root superuser.

We also need to have this additional XML data file in the manifest file:

 "data": [

 "security/library_security.xml",

 "views/library_menu.xml",

],

Notice that the library_security.xml file was added before library_menu.xml.
The order used to load data files is important since references can only use IDs that have
already been defined. It is common for menu items to reference security groups, and so it
is a good practice to add security definitions before menu and view definitions.

The next step is to add the Python code defining the app models. But before that, we will
add some test cases, following a test-driven development (TDD) approach.

Step 3 – Adding automated tests
Programming best practices include having automated tests for your code. This is even
more important for dynamic languages such as Python—since there is no compilation
step, you can't be sure there are no syntactic errors until the interpreter runs the code.
A good editor can help us detect some of these problems ahead of time but can't help us
ensure the code performs as intended, as automated tests can.

The TDD method states that we should write tests upfront, check that they fail, then
develop code that, in the end, should pass the tests. Inspired by this approach, we will add
our module tests now before we add the actual features.

Step 3 – Adding automated tests 89

Odoo supports automated tests, based on Python's built-in unittest library. Here, we
will have a quick introduction to automated tests, and a longer explanation is provided in
Chapter 8, Business Logic – Supporting Business Processes.

Changes in Odoo 12
Until Odoo 11, tests could also be described using YAML Ain't Markup
Language (YAML) data files. YAML data-file support was removed in Odoo
12, so this kind of test is not available anymore.

The tests need to meet a few requirements to be found and executed by the test runner,
as follows:

1. Tests are placed in the tests/ subdirectory. Unlike regular module Python code,
this directory does not need to be imported into the top level __init__.py file. The
test-running engine will look for these test directories in modules, and then run them.

2. The test code files should have a name starting with test_ and should be imported
from tests/__init__.py. The test code will be in classes derived from one of
the several test objects available in the Odoo framework, imported from odoo.
tests.common. The most frequently used test class is TransactionCase. The
test objects use the setUp() method to initialize the data used by the test cases.

3. Each test case is a method with a name starting with test_. For the
TrasactionCase test object, each test is an independent transaction, running
the setup step before, and rolling it back at the end. So, the next step won't see the
changes made by the previous test.

Tip
Tests can use demonstration data for an easier setup phase, but this is not a
good practice since test cases can then only run in databases with demo data
installed. If all the test data is prepared in the test setup, then the test can run in
any database, including empty databases or copies of production databases.

We plan for our app to have a library.book model. Let's add a simple test to confirm
that a new book has been created correctly.

90 Your First Odoo Application

Adding test cases
We will add a simple test to check book creation. For this, we need to add some setup data
and add a test case. The test case will just confirm that the active field has the expected
default value, True.

To do this, follow these steps:

1. Add a tests/__init__.py file with the following code:

from . import test_book

2. Then, add the actual test code, available in the tests/test_book.py file,
as follows:

from odoo.tests.common import TransactionCase

class TestBook(TransactionCase):

 def setUp(self, *args, **kwargs):

 super().setUp(*args, **kwargs)

 self.Book = self.env["library.book"]

 self.book1 = self.Book.create({

 "name": "Odoo Development Essentials",

 "isbn": "879-1-78439-279-6"})

 def test_book_create(self):

 "New Books are active by default"

 self.assertEqual(

 self.book1.active, True

)

The setUp() function gets a pointer to the Book model object and uses it to create
a new book.

The test_book_create test case adds a simple test case, checking that the created
book has the expected default value for the active field. It would make sense for the
book to be created in the test case, instead of in the setup method. The reason we chose
not to do this is that we want to also use this book for other test cases, and having it
created in the setup avoids duplicating that code.

Step 3 – Adding automated tests 91

Running tests
Tests are run starting the server with the --test-enable option while installing or
upgrading the module, as follows:

(env15) $ odoo -c ~/work15/library.conf -u library_app \

--test-enable

The Odoo server will look for a tests/ subdirectory in the upgraded modules and will
run them. At this point, the tests are expected to throw an error, so you should see ERROR
messages related to the tests in the server log. This should change once we add the book
model to the module.

Now, we should add tests for the business logic. Ideally, we want every line of code to be
covered by at least one test case.

Testing business logic
We plan to have logic checking for a valid ISBN. So, we will add a test case to check
that the method correctly validates the ISBN for the Odoo Development Essentials first
edition book. The check will be implemented by a _check_isbn() method, returning
True or False.

In tests/test_book.py, add a few more lines of code after the test_create()
method, as follows:

 def test_check_isbn(self):

 "Check valid ISBN"

 self.assertTrue(self.book1._check_isbn)

It is recommended to write a different test case for each action to check. Remember that
when using the TransactionCase test, each test will run independently from the
others, and the data created or changed during one test case is rolled back when it ends.

Note that if we run the tests now they should fail, since the tested features have not been
implemented yet.

92 Your First Odoo Application

Testing access security
Access security can also be checked to confirm that users have the correct privileges granted.

By default, tests are executed with the Odoo internal user, __system__, which
bypasses access security. So, we need to change the user running the tests, to check
whether the right access security has been given to them. This is done by modifying the
execution environment, self.env, setting the user attribute to the user we want to
run the tests with.

We can modify our tests to take this into account. Edit the tests/test_book.py file
to add a setUp method, as follows:

def setUp(self, *args, **kwargs):

 super().setUp(*args, **kwargs)

 user_admin = self.env.ref("base.user_admin")

 self.env = self.env(user=user_admin)

 self.Book = self.env["library.book"]

 self.book_ode = self.Book.create({

 "name": "Odoo Development Essentials",

 "isbn": "879-1-78439-279-6"})

We added two lines to the setUp method. This first one finds the admin user record,
using its XML ID. The second line modifies the environment used to run the tests, self.
env, changing the active user to the admin user.

No further changes are needed for the tests we already wrote. They will run in the same
way, but now using the admin user, because of the modified environment.

The Library app now has a couple of basic tests, but they are failing. Next, we should add
the code implementing the features, to make the tests pass.

Step 4 – Implementing the model layer
Models describe and store business object data, such as a customer relationship
management (CRM) opportunity, sales order, or a partner (customer, supplier, and so on).
A model describes a list of fields and can also have specific business logic attached to it.

Step 4 – Implementing the model layer 93

Model data structure and attached business logic are described with Python code, using
an object class derived from an Odoo template class. A model maps to a database table,
and the Odoo framework takes care of all the database interactions, both in keeping the
database structure in sync with the object and in translating all transactions to database
instructions. The framework component responsible for this is the object-relational
mapping (ORM) component.

Our application will be used to manage a library, and we need a model for the book catalog.

Creating a data model
Following the Odoo development guidelines, the Python files for models should be placed
inside a models subdirectory, and there should be one file for each model. So, we will
create a models/library_book.py file in the library_app module.

Tip
The Odoo official coding guidelines can be found at http://www.odoo.
com/documentation/15.0/reference/guidelines.html.
Another relevant coding standards document is the Odoo Community
Association (OCA) coding guidelines, which can be found at https://
odoo-community.org/page/contributing.

The first thing is to have the models/ directory used by our module. This means that
it should be imported by Python when the module is loaded by Odoo. For this, edit the
module's main __init__.py file so that it contains this line:

from . import models

Similarly, the models/ subdirectory should contain an __init__.py file importing the
code file to use. Add a models/__init__.py file containing the following code:

from . import library_book

Next, we can create a models/library_book.py file with the following content:

from odoo import fields, models

class Book(models.Model):

 _name = "library.book"

 _description = "Book"

 name = fields.Char("Title", required=True)

http://www.odoo.com/documentation/15.0/reference/guidelines.html
http://www.odoo.com/documentation/15.0/reference/guidelines.html

94 Your First Odoo Application

 isbn = fields.Char("ISBN")

 active = fields.Boolean("Active?", default=True)

 date_published = fields.Date()

 image = fields.Binary("Cover")

 publisher_id = fields.Many2one("res.partner",

 string="Publisher")

 author_ids = fields.Many2many("res.partner",

 string="Authors")

The first line is a Python code import statement, to make the models and fields
Odoo core objects available.

The second line declares the new library.book model. This is a Python class derived
from models.Model.

The next lines are indented. Python code blocks are defined by indentation levels, so this
means that these next lines are part of the Book class definition. The class name uses
CamelCase, as that is the usual convention for Python. The actual Python class name
used is irrelevant for the Odoo framework. The model ID relevant for Odoo is the _name
attribute, declared in the next line.

The two next lines start with an underscore and declare some Odoo class attributes. The
_name attribute defines the unique ID (UID) that will be used throughout Odoo to refer
to this model. Model IDs use dots (.) to separate their keywords.

Tip
Model IDs use dot-separated words. Everything else uses underscores (_):
addon module names, XML IDs, table names, and so on.

Then, we have the _description model attribute. This is a display name for the model
records that can be used in some user messages to refer to a record. It is not mandatory
but will display a warning message in the server log if it is missing.

The last seven lines declare model fields. We can see a sample of the most frequently used
field types. For scalar values, we can see the Char, Boolean, Date, and Binary field
types being used. For relational fields, we can see Many2one and Many2many.

The name field is used for the data record title—in this case, the book title.

Step 4 – Implementing the model layer 95

The active field is used for active records. By default, only active records are shown, and
inactive records are automatically hidden. This is useful on master data models to hide away
records that are no longer in use but, for historical reasons, need to be kept in the database.

Tip
name and active are special field names. By default, the Odoo framework
makes special use of them. The name field is used by default for the record
display name the text shows when a record is referenced from another model.
The active field is used to filter out inactive records from the UI.

publisher_id is a many-to-one relation field—in database jargon, a foreign key (FK).
It stores a link to a record in another model—the res.partner partner model in this
case. It is used to reference the publishing company. The convention is for many-to-one
field names to end with _id.

author_ids is a many-to-many relation field. It can store links to one or more records
in another model. It is used for the book authors and can reference several records in
the res.partner partner model. At the database level, this data is not actually stored
in a table field but in a helper table, automatically created to store the relations between
records in the two tables. The convention is for to-many field names to end with _ids.

These are two different relations, both between the book and the partner models. The
partner model is built into the Odoo framework and is where people, companies, and
addresses should be stored. We are using it to store both our publishers and authors.

Now, we make these changes effective in Odoo by upgrading the Library app module.
Again, this is the command we can run to update the library_app module on the
library database:

(env15)$ odoo -c ~/work15/library.conf -d library \

-u library_app

96 Your First Odoo Application

There are no menu items yet to access the book model. These will be added later in the
chapter. Still, to inspect the newly created model and confirm it was properly created in
the database, we can use the Technical menu. In the Settings top menu, go to Technical |
Database Structure | Models, search the list for the library.book model and click on
it to see its definition, as illustrated in the following screenshot:

Figure 3.4 – The library.book model view in the Technical menu

We should be able to see the model listed, and confirm that it contains the fields we
defined in the Python file. If you can't see this, try again a server restart with a module
upgrade, and pay close attention to the server log, looking for the messages loading the
Library app, and for any warnings reporting issues with the Odoo database.

On the library.book field list, we can see some additional fields that we didn't
declare. These are special fields that Odoo automatically adds to every model. They are
listed as follows:

• id is a unique numeric database ID for each record.

• create_date and create_uid are the record creation timestamp and the user
who created the record.

Step 5 – Setting up access security 97

• display_name provides a textual representation for the record used—for
example, when it is referenced in other records. It is a computed field and, by
default, just uses the text in the name field, if available.

• write_date and write_uid are the record's last modification timestamp and
the user who did that update.

• __last_update is a computed field not stored in the database and is used for
concurrency checks.

The book model is now created in the database, but it is not yet available to users. We need
a menu item for that, but that won't be enough. For the menu item to be visible, users first
need to be granted access to the new model.

Step 5 – Setting up access security
The library.book model was created as the database, but you might have noticed that
when it is loaded, it prints this warning message to the server log:

 The model library.book has no access rules, consider adding
one.

The message is pretty clear—the new model has no access rules, and so it can't be used by
anyone yet. Earlier, we created the security groups for this app, and we now need to give
them access to the app's models.

Changes in Odoo 12
The admin user follows access security rules, just as with any other user,
except for the root-like internal superuser. We need to grant it access to new
models before it can use them. This was not the case up to Odoo 11. In these
earlier Odoo versions, the admin user was also the internal superuser and
bypassed access security rules. This means that newly created models were
automatically available and usable to it.

98 Your First Odoo Application

Adding access control security
To get a picture of what information is needed to add access rules to a model, on the web
client, navigate to Settings | Technical | Security | Access Rights, as illustrated in the
following screenshot:

Figure 3.5 – Access Rights list, in the Technical menu

These access rights are also referred to as an access control list or ACL. In the previous
screenshot, we can see the ACL for some models. It indicates, for a security group, what
kinds of actions are allowed on records: read, write, create, and delete.

Changes in Odoo 14
Transient models, used for interactive wizards, now also need to be provided
access rights to user groups. In previous Odoo versions, this was not so, and
users had access to these models by default. The recommendation is to grant
read, write and create rights and not grant delete/unlink rights (1,1,1,0 on
CSV files).

For the Library app, we will grant library users access to read, write, and create book
records, and grant full access to library managers, including deleting records.

Step 5 – Setting up access security 99

This data can be provided by a module data file, loading records into the ir.model.
access model. The filename for CSV data files must match the model ID we are loading
data into.

So we should add the security/ir.model.access.csv file, with the following
content:

id,name,model_id:id,group_id:id,perm_read,perm_write,perm_
create,perm_unlink

access_book_user,BookUser,model_library_book,library_group_
user,1,1,1,0

access_book_manager,BookManager,model_library_book,library_
group_manager,1,1,1,1

The first line of the file has the field names. These are the columns provided in our CSV file:

• id is the record's external ID (also known as XML ID). It should be unique in
our module.

• name is a descriptive title. It is informative and it is recommended for it to be unique.

• model_id is the external ID for the model we are giving access to. Models have
XML IDs automatically generated by the ORM; for library.book, the ID is
model_library_book.

• group_id identifies the security group to give permissions to. We grant access
to the security groups created before: library_group_user and library_
group_manager.

• The perm_... fields grant access to the read, write, create, or unlink
(delete) operations. We used 1 for yes/true and 0 for no/false.

We must not forget to reference this new file in the data key in the __manifest__.py
file. It should look like this:

 "data": [

 "security/library_security.xml",

 "security/ir.model.access.csv",

 "views/library_menu.xml",

],

As before, upgrade the module to make these changes effective in the Odoo database.
The warning message should be gone.

100 Your First Odoo Application

At this point, the books model is available and should be accessible to the admin user.
So, the first of our tests should be passing. Let's run it now, as follows:

(env15) $ odoo -c ~/work15/library.conf -u library_app --test-
enable

We should see one test pass and one test fail.

The ACL Access Rights option grants permissions at the model level, but Odoo also
supports row-level access security, through Record Rules. This feature is explained in the
following section.

Row-level access rules
Record rules define filters limiting the records a security group can access. For example,
a salesperson could be limited to seeing only their own quotations, or an accounting user
could be limited to seeing only accounting entries for the company they were given access to.

To showcase this feature, we will limit library users to not be able to see inactive books.
It is true that by default these are hidden, but they are still accessible if we filter the records
with an active equals True condition.

Record Rules can be found in the Technical menu, alongside the Access Rights option.
They are stored in the ir.rule model.

Record rule definition fields needed are outlined here:

• name: A distinctive title, preferably unique.

• model_id: A reference to the model that the rule applies to.

• groups: A reference to the security group the rule applies to. This field is optional,
and if not set it is considered a global rule (the global field is automatically set to
True). Global rules behave differently—they impose restrictions that non-global
rules can't override. It uses a specific syntax to write on to-many fields.

• domain_force: The domain filter to use for the access restriction, using a list of
tuples syntax for filter expressions used by Odoo.

To add a record rule to the Library app, edit the security/library_security.xml
file to add a second <data> section, just before the </odoo> final tag, as follows:

 <data noupdate="1">

 <record id="book_user_rule" model="ir.rule">

 <field name="name">Library Book User Access</field>

 <field name="model_id" ref="model_library_book"/>

Step 5 – Setting up access security 101

 <field name="domain_force">

 [('active', '=', True)]

 </field>

 <field name="groups" eval="[(4,

 ref('library_group_user'))]"/>

 </record>

 </data>

The record rule is inside a <data noupdate="1"> element, meaning that those
records will be created on module install but won't be rewritten on module updates.
The point is to allow these rules to be later customized without the risk of those
customizations having a module upgrade.

Tip
While developing, noupdate="1" data sections can be a nuisance since later
fixes and changes won't be updated on module upgrade. There are two ways to
work around this. One is to temporarily work with noupdate="0" during
development, and change it to the final noupdate="1" when you're finished.
The second way is to reinstall the module instead of upgrading. This is possible in
the command line, using -i instead of -u on an already installed module.

The groups field is a many-to-many relation and uses a special syntax needed for
the to-many fields. It is a list of tuples, where each tuple is a command. In this case, a
(4, x) command was used, and the code 4 means that the record referenced next is to
be appended to the values. The referenced record is library_group_user, the Library
user group. The to-many field write syntax is discussed in more detail in Chapter 6, Models
– Structuring the Application Data.

The domain expression also uses a special syntax, with a list of triples, each specifying a
filter condition. The domain filter syntax is explained in Chapter 7, Recordsets — Working
with Model Data.

Now that users can access the book model, we can go ahead with adding the UI, starting
with the menu items.

102 Your First Odoo Application

Step 6 – Implementing the backend view layer
The view layer describes the UI. Views are defined using XML, which is used by the web
client framework to dynamically generate data-aware HTML views.

Menu items can execute window actions to render views. For example, the Users
menu item processes a window action, also called Users, that in turn renders a view
composition, with a list and a form.

Several view types are available. The three most commonly used views are the List
(sometimes called tree for historical reasons), the Form, and the Search options available
in the top-right search box.

Throughout the next sections, we will make gradual improvements and will need frequent
module upgrades to make them available, or we can use the --dev=all server option,
which spares us from module upgrades while developing. Using it, the view definitions
are read directly from the XML files, and the changes made are immediately available to
Odoo without the need for a module upgrade. In Chapter 2, Preparing the Development
Environment, more details are given on the --dev server option.

Tip
If a module upgrade fails because of an XML error, don't panic! Carefully read
the error message in the server log. It should point you to where the problem is.
If you feel in trouble, just comment out the last edited XML portions or remove
the XML file from __manifest__.py and repeat the upgrade. The server
should then start correctly.

Following the Odoo development guidelines, the XML files for the UI should be inside a
views/ subdirectory.

Let's start creating a UI for our to-do application.

Adding menu items
The Library app now has the model to store book data, and we want to have it available on
the UI. The first thing to do is add the corresponding menu options.

Edit the views/library_menu.xml file and add the records for the window action
and the menu item for the books model, as follows:

 <!-- Action to open the Book list -->

 <record id="action_library_book" model=

 "ir.actions.act_window">

 <field name="name">Library Books</field>

Step 6 – Implementing the backend view layer 103

 <field name="res_model">library.book</field>

 <field name="view_mode">tree,form</field>

 </record>

 <!-- Menu item to open the Book list -->

 <menuitem id="menu_library_book"

 name="Books"

 parent="menu_library"

 action="action_library_book"

 />

This data file describes two records to add to Odoo, as follows:

• The <record> element defines a client-side window action, to open the
library.book model with the tree and form views enabled, in that order.

• The <menuitem> for Books, running the action_library_book action,
defined before.

Upgrading the Library app now will make these changes available. A browser page reload
might be needed to see the new menu items. Once this is done, the Library top menu
should be available in Odoo, having a Books submenu option.

Even though we haven't defined our UI view, Odoo provides automatically generated
views, allowing us to start browsing and editing data right away.

Clicking on the Library | Books menu item will display a basic list view, and clicking on
the Create button will show a form like this:

Figure 3.6 – Automatically generated form view for Library Books

104 Your First Odoo Application

Odoo provides automatically generated views for us, but they're not that great. We might
take this into our own hands and create our views, starting with the book form view.

Creating a form view
Views are data records stored in the database, in the ir.ui.view model. So, we need to
add a data file, with a <record> element describing the view.

Add this new views/book_view.xml file to define the form view:

<odoo>

 <record id="view_form_book" model="ir.ui.view">

 <field name="name">Book Form</field>

 <field name="model">library.book</field>

 <field name="arch" type="xml">

 <form string="Book">

 <group>

 <field name="name" />

 <field name="author_ids"

 widget="many2many_tags" />

 <field name="publisher_id" />

 <field name="date_published" />

 <field name="isbn" />

 <field name="active" />

 <field name="image" widget="image" />

 </group>

 </form>

 </field>

 </record>

</odoo>

The ir.ui.view record has a record id field that defines an XML ID that can be used
for other records to reference it. The view record sets values for three fields: name, model,
and arch.

Step 6 – Implementing the backend view layer 105

The view is for the library.book model and is named Book Form. The name is just
for information purposes. It does not have to be unique, but it should allow you to easily
identify which record it refers to. In fact, the name can be entirely omitted; in that case,
it will be automatically generated from the model name and the view type.

The most important field is arch as it contains the actual view definition, and this needs
closer examination.

The first element of the view definition is the <form> tag. It declares the type of view we
are defining and the remaining elements that should be contained in it.

Next, we define sections inside the form, using <group> elements. These may contain
can contain <field> elements or other elements, including nested group elements.
A group adds an invisible grid with two columns, perfect for fields because, by default,
they occupy two columns, one for the label text, and another for the input field.

Our simple form contains a single <group> element, and inside it, we added a <field>
element for each of the fields to be presented. The fields automatically use an appropriate
default widget, such as a date selection widget for date fields. In some cases, we might
want to use a specific widget, adding the widget attribute. That was the case for
author_ids, using a widget to display the authors as a list of tags, and the image field,
using a widget appropriate for handling images. A detailed explanation of view elements is
provided in Chapter 10, Backend Views – Designing the User Interface.

Remember to add this new file to the data key in the manifest file; otherwise, our module
won't know about it and it won't be loaded. Here's the code you'll need to do this:

 "data": [

 "security/library_security.xml",

 "security/ir.model.access.csv",

 "views/book_view.xml",

 "views/library_menu.xml",

],

The views will usually go after the security files, and before the menu file.

Remember that for the changes to be loaded to our Odoo database, a module upgrade is
needed. To see the changes in the web client, the form needs to be reloaded. Either click
again on the menu option that opens it or reload the browser page (F5 in most browsers).

106 Your First Odoo Application

Business document form views
The preceding section provided a basic form view, but we can make some improvements
to it. For document models, Odoo has a presentation style that mimics a paper page. This
form contains two top elements: a <header> element, to contain action buttons, and a
<sheet> element, to contain data fields.

We can use this and modify the basic <form> element defined in the previous section
with this one:

<form>

 <header>

 <!-- Buttons will go here -->

 </header>

 <sheet>

 <!-- Content goes here: -->

 <group>

 <field name="name" />

 <field name="author_ids" widget="many2many_tags" />

 <field name="publisher_id" />

 <field name="date_published" />

 <field name="isbn" />

 <field name="active" />

 <field name="image" widget="image" />

 </group>

 </sheet>

</form>

Forms can feature buttons, used to perform actions. These buttons can run a window
action, usually opening another form, or run a Python class method. Buttons can be
placed inside a <header> section at the top, or anywhere inside a form. Let's see how.

Adding action buttons
We will showcase a button in the header that checks if the book ISBN is valid. The code
for this will be in a method of the book model that we will name button_check_
isbn().

Step 6 – Implementing the backend view layer 107

We haven't added the method, but we can already add the corresponding button to the
form, as follows:

<header>

 <button name="button_check_isbn" type="object"

 string="Check ISBN" />

</header>

The basic attributes of a button are listed as follows:

• string: The UI text to display on the button

• type: The type of action it performs, object or action.

• name: This is the ID of the action that is run. For object, type is the method
name; for action, this is the action record ID.

• class: This is an optional attribute to apply CSS styles, as in regular HTML.

Using groups to organize forms
The <group> tag allows us to organize the form content. A <group> element creates an
invisible grid with two columns. Field elements added inside it will be vertically stacked, as
each field takes up two cells—one for the label and another for the input box. Adding two
<group> elements inside a <group> element creates a layout with two columns of fields.

We will use this to organize the book form. We will change the <sheet> content to
match this:

<sheet>

 <group name="group_top">

 <group name="group_left">

 <field name="name" />

 <field name="author_ids" widget="many2many_tags" />

 <field name="publisher_id" />

 <field name="date_published" />

 </group>

 <group name="group_right">

 <field name="isbn" />

 <field name="active" />

108 Your First Odoo Application

 <field name="image" widget="image" />

 </group>

 </group>

</sheet>

The <group> elements used have a name attribute assigning an ID to them. This is not
required but is advised, since it makes it easier for them to be referenced by extension views.

The complete form view
At this point, the XML definition for the book form view should look like this:

<form>

 <header>

 <button name="check_isbn" type="object"

 string="Check ISBN" />

 </header>

 <sheet>

 <group name="group_top">

 <group name="group_left">

 <field name="name" />

 <field name="author_ids" widget="many2many_tags" />

 <field name="publisher_id" />

 <field name="date_published" />

 </group>

 <group name="group_right">

 <field name="isbn" />

 <field name="active" />

 <field name="image" widget="image" />

 </group>

 </group>

 </sheet>

</form>

The action buttons don't work yet, since we still need to add their business logic. This will
be done later in this chapter.

Step 6 – Implementing the backend view layer 109

Adding list and search views
List views are defined using a <tree> view type. Their structure is quite straightforward.
The <tree> top element should include the fields to present as columns.

We can add the following <tree> view definition to book_view.xml:

<record id="view_tree_book" model="ir.ui.view">

 <field name="name">Book List</field>

 <field name="model">library.book</field>

 <field name="arch" type="xml">

 <tree>

 <field name="name"/>

 <field name="author_ids" widget="many2many_tags" />

 <field name="publisher_id"/>

 <field name="date_published"/>

 </tree>

 </field>

</record>

This defines a list with four columns: name, author_ids, publisher_id, and date_
published.

At the top-right corner of the list, Odoo displays a search box. The fields it searches in and
the available filters are defined by a <search> view.

As before, we will add this to book_view.xml, as follows:

<record id="view_search_book" model="ir.ui.view">

 <field name="name">Book Filters</field>

 <field name="model">library.book</field>

 <field name="arch" type="xml">

 <search>

 <field name="publisher_id"/>

 <filter name="filter_inactive"

 string="Inactive"

 domain="[('active','=',True)]"/>

 <filter name="filter_active"

 string="Active"

110 Your First Odoo Application

 domain="[('active','=',False)]"/>

 </search>

 </field>

</record>

This search view is using two different elements, <field> and <filter>.

The <field> elements define fields that are automatically searched when the user is
typing in the search box. We added publisher_id to automatically show search results
for the publisher field. The <filter> elements add predefined filter conditions, which
can be toggled with a user click. The filter condition uses the Odoo domain filter syntax.
Domain filters are addressed in more detail in Chapter 10, Backend Views — Designing the
User Interface.

Changes in Odoo 12
<filter> elements are now required to have a name="..." attribute,
uniquely identifying each filter definition. If it's missing, the XML validation
will fail and the module will not install or upgrade.

We now have the Library app's basic components in place—the model and the view layers.
Next, we add the business logic layer, adding the code that will make the Check ISBN
button work.

Step 7 – Implementing the business logic layer
The business logic layer supports the application's business rules, such as validations and
automation. We will now add the logic for the Check ISBN button. This is done using
Python code, adding a method to the Python class representing the library.book model.

Adding business logic
Modern ISBNs have 13 digits, the last of which is a check digit computed from the first
12. If digits contains the first 12 digits, this Python code returns the corresponding
check digit:

ponderations = [1, 3] * 6

terms = [a * b for a, b in zip(digits, ponderations)]

remain = sum(terms) % 10

check = 10 - remain if remain != 0 else 0

return digits[-1]

Step 7 – Implementing the business logic layer 111

The preceding code, with some adjustments, will be at the heart of our validation
function. It should be a method in the class Book(...) object. We will add a method
that checks a record's ISBN and returns True or False, as follows:

 def _check_isbn(self):

 self.ensure_one()

 digits = [int(x) for x in self.isbn if x.isdigit()]

 if len(digits) == 13:

 ponderations = [1, 3] * 6

 terms = [a * b for a, b in zip(digits[:12],

 ponderations)]

 remain = sum(terms) % 10

 check = 10 - remain if remain != 0 else 0

 return digits[-1] == check

Note that this method is not directly usable from the Form button, because it doesn't
provide any visual cue of the result. Next, we will add a second method for that.

Changes in Odoo 13
The @api.multi decorator was removed from the Odoo application
programming interface (API) and can't be used. Note that for previous Odoo
versions, this decorator was available, but not necessary. Adding it or not would
have the exact same effect.

To report validation issues to the user, we will use the Odoo ValidationError
exception, so the first thing to do is to make it available by importing it. Edit the models/
library_book.py Python file to add this at the top of the file, as follows:

from odoo.exceptions import ValidationError

Next, still in the models/library_book.py file, add the following code to the
Book class:

def button_check_isbn(self):

 for book in self:

 if not book.isbn:

 raise ValidationError("Please provide an ISBN

 for %s" % book.name)

112 Your First Odoo Application

 if book.isbn and not book._check_isbn():

 raise ValidationError("%s ISBN is invalid" %

 book.isbn)

 return True

Here, self represents a recordset, and we can loop through each record and perform a
check on each.

This method is used in a Form button, so it would be reasonable to expect self to be a
single record and have no need to use the for loop. In fact, we did something similar with
the _check_isbn() helper method. If you're going this way, it is recommended to add
self.ensure_one() at the beginning of the method, to fail early if for some reason
self is not a single record.

But we chose to use a for loop to support multiple records, making our code capable of
performing mass validations if we want to have that feature later on.

The code loops through all the selected book task records and, for each one, if the book
ISBN has a value, it checks if it is valid. If not, a warning message is raised for the user.

The Model method does not need to return anything, but we should have it at least return
a True value. The reason is that not all client implementations of the XML-Remote
Procedure Call (RPC) protocol support None/Null values, and may raise errors when
such a value is returned by a method.

This is a good moment to upgrade the module and run the tests again, adding the
--test-enable option to confirm that tests are now passing. You can also try it live,
going into a book form and trying the button with both correct and incorrect ISBNs.

The Library app has all the backend features we wanted to add for its first iteration, and we
implemented the Odoo components at the several layers: model, view, and business logic.
But Odoo also supports creating external-facing web pages. In the next section, we will
create our first Odoo website page.

Step 8 – Implementing the website UI
Odoo also provides a web development framework, to develop website features closely
integrated with the backend apps. We will take our first steps toward this by creating a
simple web page to display a list of active books in our library.

The book catalog page will respond to web requests at the http://my-server/
library/books address, so /library/books is the URL endpoint we want to
implement.

Step 8 – Implementing the website UI 113

Web controllers are the components responsible for rendering web pages. A controller
is a Python method in an http.Controller derived class. The method is bound to
one or more URL endpoints using the @http.route controller. When any of these
URL endpoints are accessed, the controller code executes and returns the HTML to
be presented to the user. The HTML rendering will usually be done using the QWeb
templating engine.

Adding the endpoint controller
Code for controllers is expected to be inside a /controllers subdirectory. To add a
controller, first edit the library_app/__init__.py file to have it also import the
controllers subdirectory, as follows:

from . import models

from . import controllers

Then, add a library_app/controllers/__init__.py file so that this directory
can be Python-imported, and add an import statement to it for the main.py Python file
we will implement the controller with, as follows:

from . import main

Now, add the actual file for the controller, library_app/controllers/main.py,
with the following code:

from odoo import http

class Books(http.Controller):

 @http.route("/library/books")

 def list(self, **kwargs):

 Book = http.request.env["library.book"]

 books = Book.search([])

 return http.request.render(

 "library_app.book_list_template",

 {"book"': books}

)

The first line imports the odoo.http module, the core framework component providing
web-related features. Next, we create a controller object class, derived from http.
Controller.

114 Your First Odoo Application

The particular ID name we choose for the class and for its methods is not relevant. The
@http.route decorator is important since it declares the URL endpoint to be bound—
/books in this case. For now, the web page is using the default access control and
requires a user login.

Inside the controller method, we can access the run environment using http.request.
env. We use it to get a recordset with all active books in the catalog.

The final step is to use http.request.render() to process the library_app.
index_template QWeb template and generate the output HTML. We can make
values available to the template through a dictionary, and this was used to pass the
books recordset.

If we now restart the Odoo server to reload the Python code and try accessing the /
library/books URL, we should get an error message in the server log: ValueError:
External ID not found in the system: library_app.book_list_
template. This is expected since we haven't defined that template yet. That should be
our next step.

Adding a QWeb template
QWeb templates are also stored along with the other Odoo views, and the corresponding
data files are usually stored in the /views subdirectory. Let's add the views/book_
list_template.xml file, as follows:

<odoo>

<template id="book_list_template" name="Book List">

 <div id="wrap" class="container">

 <h1>Books</h1>

 <t t-foreach="books" t-as="book">

 <div class="row">

 ,

 ,

 </div>

 </t>

 </div>

</template>

</odoo>

Step 8 – Implementing the website UI 115

The <template> element declares a QWeb template. In fact, it is a shortcut for an
ir.ui.view record, the base model where templates are stored. The template contains
the HTML to use and uses QWeb-specific tags and attributes.

The t-foreach attribute is used to loop through the items in the books variable that was
made available to the template by the controller's http.request.render() call. The
t-field attribute takes care of properly rendering the content of an Odoo record field.

The QWeb template data file needs to be declared in the module manifest, as with
any other XML data file, so that it gets loaded and can be made available. So, the __
manifest__.py file should be edited to add it, as shown next:

 "data": [

 "security/library_security.xml",

 "security/ir.model.access.csv",

 "views/book_view.xml",

 "views/library_menu.xml",

 "views/book_list_template.xml",

],

After declaring the XML file in the manifest and performing a module upgrade, the web
page should be working. Opening the http://<my-server>:8069/library/
books URL with an active Odoo login should show us a simple list of the available books,
as shown in the next screenshot:

Figure 3.7 – Web page with a book list

This is a short overview of the Odoo web page features. These features are discussed in
more depth in Chapter 13, Creating Web and Portal Frontend Features.

116 Your First Odoo Application

Quick reference
Most of the components are discussed in more detail in other chapters, and quick
references are provided there, as follows:

• Chapter 2, Preparing the Development Environment, for the CLI install and
upgrade modules

• Chapter 5, Importing, Exporting, and Module Data, for creating XML and CSV
data files

• Chapter 6, Models – Structuring the Application Data, for the model layer, defining
models and fields

• Chapter 7, Recordsets – Working with Model Data, for domain filter syntax and
recordset manipulation

• Chapter 8, Business Logic – Supporting Business Processes, for Python method
business logic

• Chapter 10, Backend Views – Designing the User Interface, for views, including
window actions, menu items, forms, lists, and searches

• Chapter 13, Creating Web and Portal Frontend Features, for web controllers and
QWeb syntax

Not explained further elsewhere is access security, and we provide here a quick reference
for those components.

Access security
Internal system models are listed here:

• res.groups: groups—relevant fields: name, implied_ids, users

• res.users: users—relevant fields: name, groups_id

• ir.model.access: Access Control—relevant fields: name, model_id, group_
id, perm_read, perm_write, perm_create, perm_unlink

• ir.access.rule: Record Rules—relevant fields: name, model_id, groups,
domain_force

Summary 117

XML IDs for the most relevant security groups are listed here:

• base.group_user: internal user—any backend user

• base.group_system: Settings—the Administrator belongs to this group

• base.group_no_one: technical feature, usually used to make features not
visible to users

• base.group_public: Public, used to make features accessible to web
anonymous users

XML IDs for the default users provided by Odoo are listed here:

• base.user_root: The root system superuser, also known as OdooBot.

• base.user_admin: The default user, by default named Administrator.

• base.default_user: The template used for new backend users. It is a template
and is inactive, but can be duplicated to create new users.

• base.default_public user: The template used to create new portal users.

Summary
We created a new module from scratch, covering the essential components involved in a
module—models, access security, menus, the three basic types of views (form, list, and
search), and business logic in model methods. We also learned how to create web pages
using web controllers and QWeb templates.

In the process, we got familiar with the module-development process, which involves
module upgrades and application-server restarts to make gradual changes effective in Odoo.

Always remember, when adding model fields, an upgrade is needed. When changing
Python code, including the manifest file, a restart is needed. When changing XML or CSV
files, an upgrade is needed; also, when in doubt, do both: restart the server and upgrade
the modules.

We've gone through the essential elements and steps to create a new Odoo app. But in
most cases, our modules will be extending existing apps to add features. This is what we
will learn about in the next chapter.

118 Your First Odoo Application

Further reading
All of the Odoo-specific topics presented here will be covered in more depth in the
remaining chapters of this book.

The official documentation offers some relevant resources that make good complementary
reading, as listed here:

• The Building a Module tutorial: https://www.odoo.com/
documentation/15.0/howtos/backend.html

• The Odoo Guidelines provide a list of code conventions and guidelines for
module development: https://www.odoo.com/documentation/15.0/
reference/guidelines.html

• The Odoo Community Association Guidelines provide a good resource for Odoo
development best practices: https://odoo-community.org/page/
contributing

Learning Python is important for Odoo development. There are some good Python
books from the Packt catalog, such as Learn Python Programming – Second Edition:
https://www.packtpub.com/application-development/learn-python-
programming-second-edition.

https://www.odoo.com/documentation/15.0/howtos/backend.html
https://www.odoo.com/documentation/15.0/howtos/backend.html
https://www.odoo.com/documentation/15.0/reference/guidelines.html
https://www.odoo.com/documentation/15.0/reference/guidelines.html
https://odoo-community.org/page/contributing
https://odoo-community.org/page/contributing
https://www.packtpub.com/application-development/learn-python-programming-second-edition
https://www.packtpub.com/application-development/learn-python-programming-second-edition

4
Extending Modules

One of Odoo's most powerful capabilities is being able to add features without directly
touching the code of the extended modules. This allows for clean feature extensions that
are isolated in their own code components. Extending modules can be achieved through
inheritance mechanisms, which work as modification layers on top of existing objects.
These modifications can happen at every level – including the model, view, and business
logic levels. Instead of directly modifying an existing module, we will create a new module
by adding a layer on top of the existing one with the intended modifications.

The previous chapter guided us through creating a new app from scratch. In this chapter,
we will learn how to create modules that extend existing apps or modules and use existing
core or community features.

To achieve this, we will cover the following topics:

• Learning project – extending the Library app

• Adding a new field to an existing model

• Extending models using classic in-place extension

• More model inheritance mechanisms

• Extending views and data

• Extending web pages

120 Extending Modules

By the end of this chapter, you should be able to create Odoo modules that extend existing
apps. You will be able to add modifications to any of the several application components:
models, views, business logic code, web page controllers, and web page templates.

Technical requirements
For this chapter, you will need an Odoo server that you can command from a terminal
session.

The code in this chapter depends on the code that we created in Chapter 3, Your First
Odoo Application. You should have that code in your add-ons path and have a database
with the library_app module installed.

This chapter adds the library_member add-on module to our project. The corresponding
code can be found in this book's GitHub repository, https://github.com/
PacktPublishing/Odoo-15-Development-Essentials, in the ch04 directory.

Learning project – extending the Library app
In Chapter 3, Your First Odoo Application, we created the initial module for the Library
app and provided a book catalog. Now, we will extend the application to add library
members and allow them to borrow books. For this, we will create an extension module
called library_member.

These are the features we must provide:

• Library books can be available to be borrowed or not. This information should be
shown in the book form and on the website's catalog page.

• Some library member master data, along with the library card number, plus
personal data, such as name, address, and email.

• We would like to provide members with the messaging and social features that are
available on the borrowing form, including the planned activities widget, to allow
for better collaboration.

Later, we plan to introduce a feature that allows members to borrow books from the
library, but this is outside our scope for now. This will happen gradually throughout the
next few chapters.

https://github.com/PacktPublishing/Odoo-15-Development-Essentials
https://github.com/PacktPublishing/Odoo-15-Development-Essentials

Learning project – extending the Library app 121

Books
The following is a summary of the technical changes we must introduce to books:

• Add an Is Available? field. For now, it will be managed manually, but this can
be automated later.

• Extend the ISBN validation logic to also support the older 10-digit ISBN format.

• Extend the web catalog page to identify unavailable books and to allow the user to
only filter through available books.

Members
The following is a summary of the technical changes to introduce to library members:

• Add a new model to store the person's name, card number, and contact
information, such as email and address.

• Add the social discussion and planned activities features.

To start working on this extension module, we should create the library_member
directory alongside library_app and add two files—an empty __init__.py file and
a __manifest__.py file with the following content:

{

 "name": "Library Members",

 "license": "AGPL-3",

 "description": "Manage members borrowing books.",

 "author": "Daniel Reis",

 "depends": ["library_app"],

 "application": False,

}

Now, we are ready to start working on the features. Our first task is a frequent and simple
request – adding a new field to an existing model. This happens to be a great way to
introduce Odoo's inheritance mechanisms.

122 Extending Modules

Adding a new field to an existing model
Our first task is to add the is_available Boolean field to the book model. For now,
this will be a simple editable field, but at a later stage, we can imagine changing it to be
automatic, based on books that have been borrowed and returned.

To extend an existing model, we must use a Python class with the _inherit attribute,
identifying the model being extended. The new class inherits all of the features of the
parent Odoo model, and we only need to declare the modifications to introduce. We can
think of this type of inheritance as getting a reference for the existing model and making
in-place changes to it.

Adding new fields with the in-place model extension
Extending models is done through Python classes by using the Odoo-specific inheritance
mechanism that's declared using the _inherit class attribute. This _inherit class
attribute identifies the model to be extended. The declared calls capture all the features of
the inherited Odoo model and are ready for the modifications to introduce to be declared.

The coding style guidelines recommend having a Python file for each model, so we will
add a library_member/models/library_book.py file that extends the original
model. Let's start by adding the __init__.py code files that are needed for that file to
be included in the module:

1. Add the library_member/__init__.py file, making the code that's in the
models subdirectory known:

from . import models

2. Add the library_member/models/__init__.py file, importing the used
code files inside that subdirectory:

from . import library_book

3. Create the library_member/models/library_book.py file by extending
the library.book model:

from odoo import fields, models

class Book(models.Model):

 _inherit = "library.book"

 is_available = fields.Boolean("Is Available?")

Adding a new field to an existing model 123

Here, we used the _inherit class attribute to declare the model to extend. Notice that
we didn't use any other class attributes, not even _name. This is not needed unless we
want to make changes to any of them.

Tip
_name is the model identifier; what happens if we try to change it? This
is allowed, and doing so creates a new model that is a copy of the inherited
one. This is called prototype inheritance and it will be discussed later in this
chapter, in the Copying models with prototype inheritance section.

We can think of this as getting a reference to a model definition living in a central registry
and making in-place changes to it. This can include adding fields, modifying existing
fields, modifying model class attributes, or adding methods with new business logic.

To add the new model fields to the database tables, we must install the add-on module.
If everything goes as expected, the newly added fields should be visible if we go to the
Technical | Database Structure | Models menu option and inspect the library.
book model.

Adding a field to the Form view
Forms, lists, and search views are defined using XML data structures. To extend views, we
need a way to modify the XML. This means locating XML elements and then introducing
modifications at those points.

The XML data record for inherited views is similar to the ones for regular views, with an
additional inherit_id attribute for referring to the view being extended.

We are going to extend the book view to add the is_available field.

The first thing we need to do is find the XML ID for the view to be extended. We can find
that by looking up the view in the Settings app, in the Technical | User Interface | Views
menu. The XML ID for the book form is library_app.view_form_book.

While we're there, we should also locate the XML element to insert the changes. We will
choose to add the Is Available? field after the ISBN field. The element to use can
usually be identified by its name attribute. In this case, it's <field name="isbn" />.

124 Extending Modules

When adding the XML file to extend the Partner views, views/book_view.xml, it
should have the following content:

<odoo>

 <record id="view_form_book_extend" model="ir.ui.view">

 <field name="name">Book: add Is Available?

 field</field>

 <field name="model">library.book</field>

 <field name="inherit_id" ref=

 "library_app.view_form_book"/>

 <field name="arch" type="xml">

 <field name="isbn" position="after">

 <field name="is_available" />

 </field>

 </field>

 </record>

</odoo>

The inheritance-specific elements are highlighted in the preceding code. The inherit_
id record field identifies the view to be extended while using the ref attribute to refer to
its external identifier.

The arch field contains the element for declaring the extension point to use, the
<field> element with name="isbn", and the position of the new elements to add,
which is position="after" in this case. Inside the extension elements, we have the
XML to add, which is the is_available field in this case.

Extending models using classic in-place extension 125

This is what the book form will look like after creating this extension:

Figure 4.1 – The book form with the "Is Available?" field added

We just went through the inheritance basics and added a new field for the model and view
layers. Next, we will learn more about the model extension approach we used; that is,
classic inheritance.

Extending models using classic in-place
extension
We can think of the classic model inheritance as an in-place extension. When a Python
class with the _inherit attribute is declared, it gets a reference to the corresponding
model definition, to then add extensions to it. The model definition is stored in the Odoo
model registry and is available for us to add further modifications to it.

Now, let's learn how to use this for frequent extension use cases: modifying the attributes
of an existing field and extending Python methods to add or modify business logic.

126 Extending Modules

Incrementally modifying existing fields
When we're extending a model, existing fields can be modified incrementally. This means
that we only need to define the field attributes to change or add.

We will make two changes to the book fields that were created in the library_app
module:

• On the isbn field, add a help tooltip explaining that we support both 10- and
13-digit ISBNs, with the latter being implemented in the following section.

• On the publisher_id field, add a database index to it to make searching on it
more efficient.

We should edit the library_member/models/library_book.py file and add the
following lines to the library.book model:

class Book(models.Model):

 isbn = fields.Char(help="Use a valid ISBN-13 or

 ISBN-10.")

 publisher_id = fields.Many2one(index=True)

This modifies the fields with the specified attributes, leaving all the other attributes that
were not explicitly mentioned unmodified.

Extending models using classic in-place extension 127

Once we upgrade the module, going to the book form and hovering the mouse pointer
over the ISBN field will show the tooltip message that was added to the field. The effect of
index=True is harder to notice, but it can be seen in the field definition, which can be
accessed from the Developer Tools menu by choosing the View Fields option, or from
the Settings | Technical | Database Structure | Models menu:

Figure 4.2 – The Publisher field with the index enabled

Extending Python methods to add features to the
business logic
The business logic that's coded in Python methods can also be extended. For this, Odoo
uses the Python object inheritance mechanism to extend the inherited class behavior.

As a practical example, we will extend the library book ISBN validation logic. The logic
provided by the base Library app validates modern 13-digit ISBNs. But some older titles
might come with a 10-digit ISBN. The _check_isbn() method should be extended to
also validate these cases.

128 Extending Modules

Edit the library_member/models/library_book.py file by adding the
following code:

class Book(models.Model):

 def _check_isbn(self):

 self.ensure_one()

 digits = [int(x) for x in self.isbn if x.isdigit()]

 if len(digits) == 10:

 ponderators = [1, 2, 3, 4, 5, 6, 7, 8, 9]

 total = sum(

 a * b for a, b in zip(digits[:9],

 ponderators)

)

 check = total % 11

 return digits[-1] == check

 else:

 return super()._check_isbn()

To extend a method, in the inherited class, we define a method with the same name –
_check_isbn(), in this case. This method should, at some point, use super() to call
the corresponding method that was implemented in the parent class. In this example, the
particular code that was used was super()._check_isbn().

In this method extension, we added our logic before the super() call, running the
parent class code. It checks whether the ISBN is 10 digits long. In that case, the added
ISBN-10 validation logic is executed. Otherwise, it falls back to the original ISBN checking
logic, handling the 13-digit case.

We can try this, or even better, write a test case. Here is an example of a 10-digit ISBN: the
original ISBN of William Golding's Lord of the Flies is 0-571-05686-5.

Changes in Odoo 11
In Odoo 11, the Python version that was used changed from 2.7 to 3.5 or later.
Python 3 has breaking changes and is not fully compatible with Python 2. In
particular, the super() syntax was simplified in Python 3. For previous
Odoo versions that use Python 2, super() needs two arguments – the
class name and self; for example, super(Book, self)._check_
isbn().

More model inheritance mechanisms 129

Classic inheritance is the most frequently used extension mechanism. But Odoo provides
additional extension approaches that are useful in other cases. We will explore those next.

More model inheritance mechanisms
The previous section discussed classic inheritance, which can be seen as an in-place
extension. This is the most frequently used approach, but the Odoo framework also
supports a few other extension mechanisms that are useful in other cases.

These are delegation inheritance, prototype inheritance, and the use of mixins:

• Delegation inheritance embeds another model in the inheriting one. For example,
a User record embeds a Partner record, so that a User record has all the fields
available for the Partner records, plus the fields specific to the User records. It is
used through the _inherits attribute.

• Prototype inheritance creates a new model by copying the features from the inherited
model and has a database table and data. It is not used often and it is never used in the
Odoo-included add-on modules. It is used to set _inherit with the model to copy
and the _name attribute with the identifier for the new model to be created.

• Mixin classes are abstract models that implement generic features that are to be
reused in other models. They are like feature containers, ready to be added to other
models, and are not expected to be used alone. An example is the mail.thread
model, which is provided by the mail add-on module. It implements the chatter
and messaging features that are available in several models throughout Odoo, such
as Partners and Sales Quotations. A mixin class is constructed from Models.
abstract, instead of Models.model, and is used with _inherit.

The next few sections explore these possibilities in more detail.

Embedding models using delegation inheritance
Delegation inheritance allows us to reuse data structures, without duplication in the
database. It embeds an instance of the delegated model inside the inheriting model.

Note
To be technically precise, delegation inheritance is not real object inheritance;
instead, it is object composition, where some features of an object are delegated
to, or provided by, a second object.

130 Extending Modules

Note the following about delegation:

• Creating a new model record also creates and links a delegated model record.

• Fields from the delegated model that don't exist in the inheriting model are
available for read and write operations, behaving like related computed fields.

For example, for the User model, each record contains a Partner record, so the fields you
find on a Partner will be available, plus a few fields that are specific to users.

For the Library project, we want to add a Library Members model. Members will be able
to borrow books and have a library card to be used when borrowing. Member master
data should include the card number, plus some personal information, such as email and
address. The Partner model already supports contact and address information, so it's best
to reuse it, rather than duplicating the data structures.

To add the Partner fields to the Library Member model using delegation inheritance,
follow these steps:

1. The Python file that will be used to implement inheritance must be imported.
Edit library_member/model/__init__.py by adding the following
highlighted line:

from . import library_book

from . import library_member

2. Next, add the Python file describing the new Library Member model, library_
member/models/library_member.py, which contains the following code:

from odoo import fields, models

class Member(models.Model):

 _name = "library.member"

 _description = "Library Member"

 card_number = fields.Char()

 partner_id = fields.Many2one(

 "res.partner",

 delegate=True,

 ondelete="cascade",

 required=True)

More model inheritance mechanisms 131

With delegation inheritance, the library.member model embeds the inherited
model, res.partner, so that when a new Member record is created, a related
Partner is automatically created and referenced in the partner_id field.

Through the delegation mechanism, all the fields of the embedded model are
automatically made available as if they were fields of the parent model fields. In this
case, the Library Member model has all of the Partner fields available for use, such
as name, address, and email, plus the ones specific to members, such as card_
number. Behind the scenes, the Partner fields are stored in the linked Partner
record, and no data structure duplication occurs.

Delegation inheritance works only at the data level, not at the logic level. No
methods from the inherited model are inherited. They are still accessible using
the dot operator, which is used to access an object's attributes, also known as dot
notation. For example, for the Library Member model, partner_id.open_
parent() runs the open_parent() method of the embedded Partner record.

There is an alternative syntax for delegation inheritance that's available through the
_inherits model attribute. It comes from the pre-Odoo 8 old API, and it is still
widely used. The Library Model example with the same effect as earlier looks like this:

from odoo import fields, models

class Member(models.Model):

 _name = "library.member"

 _description = "Library Member"

 _inherits = {"res.partner": "partner_id"}

 card_number = fields.Char()

 partner_id = fields.Many2one(

 "res.partner",

 ondelete="cascade",

 required=True)

To finish adding this new model, a few additional steps are needed – add the
security ACLs, a menu item, and some view3.

132 Extending Modules

3. To add the security ACLs, create the library_member/security/ir.model.
access.csv file with this content:

id,name,model_id:id,group_id:id,perm_read,perm_
write,perm_create,perm_unlink

access_member_user,Member User Access,model_library_
member,library_app.library_group_user,1,1,1,0

access_member_manager,Member Manager Access,model_
library_member,library_app.library_group_manager,1,1,1,4

4. To add the menu item, create the library_member/views/library_menu.
xml file with the following code:

<odoo>

 <act_window id="action_library_member"

 name="Library Members"

 res_model="library.member"

 view_mode="tree,form" />

 <menuitem id="menu_library_member"

 name="Members"

 action="action_library_member"

 parent="library_app.menu_library" />

</odoo5

5. To add the views, create the library_member/views/member_view.xml file
with the following code:

<odoo>

 <record id="view_form_member" model="ir.ui.view">

 <field name="name">Library Member Form

 View</field>

 <field name="model">library.member</field>

 <field name="arch" type="xml">

 <form>

 <group>

 <field name="name" />

 <field name="email" />

 <field name="card_number" />

 </group>

 </form>

More model inheritance mechanisms 133

 </field>

 </record>

 <record id="view_tree_member" model="ir.ui.view">

 <field name="name">Library Member List

 View</field>

 <field name="model">library.member</field>

 <field name="arch" type="xml">

 <tree>

 <field name="name" />

 <field name="card_number" />

 </tree>

 </field>

 </record>

</odoo6

6. Finally, we should edit the manifest to declare these three new files:

"data": [

 "security/ir.model.access.csv",

 "views/book_view.xml",

 "views/member_view.xml",

 "views/library_menu.xml",

],

If everything was entered correctly, after a module upgrade, we should be able to work
with the new Library Member model.

Copying models with prototype inheritance
Classic inheritance uses the _inherit attribute to extend a model. Since the _name
attribute is not modified, it effectively performs an in-place modification on the same model.

If the _name attribute is also modified, along with _inherit, we get a new model that
is a copy of the inherited one. This new model can then have features added to it that are
specific to it and won't be added to the parent model. The copied model is independent
of the parent model, which will be unaffected by its modifications. It has its own database
table and data. The official documentation calls this prototype inheritance.

134 Extending Modules

In practice, there is little benefit in using _inherit to copy a model. Instead, delegation
inheritance is preferred, since it reuses data structures without duplicating them.

Things become more interesting when we use inheritance from multiple parents. For this,
_inherit will be a list of model names, instead of a single name.

This can be used to mix several models into one. It allows us to have a model proposing
features to be reused several times. This pattern is widely used with abstract mixin classes.
This will be discussed in detail in the next section.

Reusing model features using mixin classes
Setting the _inherit attribute with a list of model names will inherit the features from
those models. Most of the time, this is done to leverage mixin classes.

A mixin class is like a container of features, meant to be reused. They implement generic
features, ready to be added to other models. They are not expected to stand alone and be
used directly. So, they are abstract models, based on models.AbstractModel, with no
actual representation in the database, instead of models.Model.

The Odoo standard add-ons propose several useful mixins. Searching the code for
models.AbstractModel will reveal them. What's noteworthy, and probably the two
most widely used, are these mixins, which are provided by the Discuss app (the mail
add-on module):

• The mail.thread mixin provides features for the message board, also known as
chatter, which can be found at the bottom or right-hand side of many document
forms, along with the logic regarding messages and notifications.

• The mail.activity.mixin mixin provides activities, which are also exposed
through the chatter discussion widget, to define and plan to-do tasks.

Changes in Odoo 11
The activities mixin is a new feature that was introduced in Odoo 11 and is not
available in earlier versions.

Chatter and activities are widely used features, and in the next section, we will take a
moment to demonstrate how to add them.

More model inheritance mechanisms 135

Adding message chatter and activities to a model
We will now add the message chatter and activity mixins to the Library Members model.
This is what is needed to add them:

1. Add the dependency to the add-on module that's providing the mixin models; that
is, mail.

2. Inherit the mail.thread and mail.activity.mixin mixin classes.
3. Add fields to the Form view.

Let's check the preceding steps in detail:

1. To add the dependency to the mail add-on, edit the __manifest__.py file:

 "depends": ["library_app", "mail"],

2. To inherit the mixin classes, edit the library_member/models/library_
member.py file to add the following highlighted text:

class Member(models.Model):

 _name = "library.member"

 _description = "Library Member"

 _inherits = {"res.partner": "partner_id"}

 _inherit = ["mail.thread", "mail.activity.mixin"]

With this extra line of code, our model will include all the additional fields and
methods provided by these mixins.

Tip
In this example, the mixins are being added to a new model that is being
created now. If we were adding these mixins to an already existing model,
which had been created in another module, then the parent model should also
be included in the inherited list; for example,

_inherit = ["library.member", "mail.thread",
"mail.activity.mixin"].

136 Extending Modules

3. Finally, we must add the relevant fields to Library Member Form. Edit the
library_member/views/member_view.xml file by adding the following
highlighted code:

 <record id="view_form_member" model="ir.ui.view">

 <field name="name">Library Member Form

 View</field>

 <field name="model">library.member</field>

 <field name="arch" type="xml">

 <form>

 <group>

 <field name="name" />

 <field name="email" />

 <field name="card_number" />

 </group>

 <!-- mail mixin fields -->

 <div class="oe_chatter">

 <field name="message_follower_ids"

 widget="mail_followers"/>

 <field name="activity_ids"

 widget="mail_activity"/>

 <field name="message_ids"

 widget="mail_thread"/>

 </div>

 </form>

 </field>

 </record>

As we can see, the mail module not only provides fields for the followers, activities, and
messages, but it also provides specific web client widgets for them, all of which are being
used here.

More model inheritance mechanisms 137

Once the module has been upgraded, the Library Members form should look like this:

Figure 4.3 – The Library Members form view

Note that the mixins alone don't cause any changes to be made to access security,
including record rules. In some cases, there are record rules in place, limiting what records
are accessible to each user. For example, if we want users to only view records they are
followers of, a record rule for that must be explicitly added.

The mail.thread model includes a field for listing the follower Partners, called
message_partner_ids. To implement the followers' access rules, a record rule should
be added, with a domain expression including a condition similar to [('message_
partner_ids', 'in', [user.partner_id.id])].

With that, we've seen how to extend modules at the model and logic layers. The next step
is to extend the views to reflect the changes that were made in the model layer.

138 Extending Modules

Extending views and data
Views and other data components can also be modified by an extension module. For
views, the case is usually to add features. The view presentation structure is defined with
XML. To extend this XML, we must locate the node to extend and then declare the action
to perform there, such as inserting additional XML elements.

The other data elements represent records that were written to the database. Extension
modules can write on them to change some values.

Extending views
Views are defined using XML and are stored in the architecture field, arch. To extend a
view, we must locate the node where the extension will take place, and then perform the
intended change, such as adding XML elements.

Odoo provides a simplified notation to extend XML by using the XML tag we want to
match – <field>, for example – with one or more distinctive attributes to match, such
as name. Then, we must add the position attribute to declare the kind of modification
to make.

Recovering the example we used earlier in this chapter, to add additional content after the
isbn field, we can use the following code:

 <field name="isbn" position="after">

 <!-- Changed content goes here -->

 </field>

Any XML element and attribute can be used to select the node to use as the extension point,
except for string attributes. The values of string attributes are translated into the user's
active language during view generation, so they can't be reliably used as node selectors.

The extension operation to perform is declared with the position attribute. Several
operations are allowed, as follows:

• inside (the default): Appends the content inside the selected node. The node
should be a container, such as <group> or <page>.

• after: Adds the content after the selected node.

• before: Adds the content before the selected node.

Extending views and data 139

• replace: Replaces the selected node. If it's used with empty content, it deletes the
element. Since Odoo 10, it also allows you to wrap an element with other markups
by using $0 in the content to represent the element being replaced; for example,
<field name="name" position="replace"><h1>$0</h1></field>.

• attributes: Modifies the attribute values for the matched element.
The content should have one or more <attribute name="attr-
name">value<attribute> elements, such as <attribute
name="invisible">True></attribute>. If it's used with no body, such
as in <attribute name="invisible"/>, the attribute is removed from the
selected element.

Tip
While position="replace" allows us to delete XML elements, this
should be avoided. It can break based on modules that may be using the
deleted node as an extension point to add other elements. As an alternative,
consider leaving the element and making it invisible instead.

Moving XML nodes to a different location
Except for the attributes operation, the preceding locators can be combined with a
child element with position="move". The effect is to move the child locator target
node to the parent locator's target position.

Changes in Odoo 12
The position="move" child locator is new in Odoo 12 and is not
available in previous versions.

Here is an example of moving my_field from its current location to the position after
target_field:

<field name="target_field" position="after">

 <field name="my_field" position="move"/>

</field>

The other view types, such as list and search views, also have an arch field and can be
extended in the same way as form views can.

140 Extending Modules

Using XPath to select XML extension points
In some cases, we may not have an attribute with a unique value to use as the XML node
selector. This can happen when the element to select does not have a name attribute,
as is often the case for <group>, <notebook>, or <page> view elements. Another
case is when there are several elements with the same name attribute, as in the case of
Kanban QWeb views, where the same field can be included more than once in the same
XML template.

For these cases, we need a more sophisticated way to locate the XML element to extend.
Being XML, XPath expressions are the natural way to locate elements.

For example, taking the book form view we defined in the previous chapter, an
XPath expression for locating the <field name="isbn"> element is //field[@
name]='isbn'. This expression finds <field> elements with a name attribute equal
to isbn.

The XPath equivalent to the book form view extension that we created in the previous
section would be as follows:

<xpath expr="//field[@name='isbn']" position="after">

 <field name="is_available" />

</xpath>

More information on the supported XPath syntax can be found in the official Python
documentation: https://docs.python.org/3/library/xml.etree.
elementtree.html#supported-xpath-syntax.

If an XPath expression matches multiple elements, only the first one will be selected as
the target for an extension. Therefore, they should be made as specific as possible using
unique attributes. Using the name attribute is the easiest way to ensure that we find the
elements we want to use as an extension point. Thus, it is important to have these unique
identifiers in the XML elements of the views we create.

Modifying existing data
Regular data records can also be extended, which, in practice, means writing over existing
values. For this, we just need to identify the record to write on, as well as the fields and
values to update. XPath expressions are not needed since we are not modifying XML
arch structures, as we do for views.

The <record id="x" model="y"> data loading elements perform an insert or
update operation on model y: if record x does not exist, it is created; otherwise, it is
updated/written over.

https://docs.python.org/3/library/xml.etree.elementtree.html#supported-xpath-syntax
https://docs.python.org/3/library/xml.etree.elementtree.html#supported-xpath-syntax

Extending views and data 141

Records in other modules can be accessed using the <module>.<identifier> global
identifier, so a module can update a record that's been created by another module.

Tip
The dot (.) is reserved to separate the module name from the object identifier.
So, it can't be used in identifier names. Instead, use the underscore (_) character.

As an example, we will change the name of the User security group to Librarian. The
record to modify was created in the library_app module, with the library_app.
library_group_user identifier.

To do this, we will add the library_member/security/library_security.xml
file, along with the following code:

<odoo>

 <!-- Modify Group name -->

 <record id="library_app.library_group_user"

 model="res.groups">

 <field name="name">Librarian</field>

 </record>

</odoo>

Note that we used a <record> element, writing only to the name field. You can think of
this as a write operation in this field.

Tip
When using a <record> element, we can select the fields we want to write
on, but the same is not true for shortcut elements, such as <menuitem> and
<act_window>. These need all of the attributes to be provided and missing
any of them will set the corresponding field to an empty value. However,
you can use <record> to set a value on a field that was created through a
shortcut element.

Don't forget to add the library_member/security/library_security.xml
file to the data key in the manifest file. Having done this and upgraded the module, we
should see the name change in the user groups.

Extending views allows you to introduce modifications to the backend presentation layer.
But the same can be done to the frontend web presentation layer. This is what we will
address in the next section.

142 Extending Modules

Extending web pages
Extensibility is a key design choice for the Odoo framework, and the Odoo web components
are no exception. So, Odoo web controllers and templates can be also extended.

The Library app that we created in the previous Chapter 3, Your First Odoo Application,
provided a book catalog page that now needs to be improved.

We will extend it to leverage the book availability information that was added by the
Library Members module:

• On the controller side, we will add support to a query string parameter to filter only
the available books; that is, /library/books?available=1.

• On the template side, we will specify the books that are not available.

Let's start extending the web controller.

Extending the web controllers
Web controllers are responsible for handling web requests and rendering the page to
return as a response. They should focus on presentation logic, not deal with business logic,
which should be incorporated into model methods instead.

Supporting additional parameters or even URL routes is web presentation-specific and
something appropriate for a web controller to deal with.

The /library/books endpoint will be extended here to support a query string
parameter, available=1, which we will use to filter the catalog of books so that it only
displays the available titles.

To extend an existing controller, we need to import the original object that created it,
declare a Python class based on it, and then implement the class method holding the
additional logic.

The code to extend the controller should be added to the library_member/
controllers/main.py file, as follows:

from odoo import http

from odoo.addons.library_app.controllers.main import Books

class BooksExtended(Books):

 @http.route()

 def list(self, **kwargs):

Extending web pages 143

 response = super().list(**kwargs)

 if kwargs.get("available"):

 all_books = response.qcontext["books"]

 available_books = all_books.filtered(

 "is_available")

 response.qcontext["books"] = available_books

 return response

The steps to add the controller code are as follows:

1. Add the library_member/controllers/main.py file, ensuring it contains
the preceding code.

2. Make this new Python file known to the module by adding the controller's
subdirectory to the library_member/__init__.py file:

from . import models

from . import controllers

3. Add the library_member/controllers/__init__.py file with the
following line of code:

from . import main

4. After this, accessing http://localhost:8069/library/
books?available=1 should only show us the books with the Is Available?
field checked.

Now, let's review the controller extension code to understand how it works.

The controller to extend, Books, was originally declared by the library_app module,
in the controllers/main.py file. So, to get a reference to it, we need to import
odoo.addons.library_app.controllers.main.

This is different from models, where we have a central registry available where we can
get a reference to any model class, such as self.env['library.book'], without
knowing the particular file that's implementing it. We don't have such a registry for
controllers, and we need to know the module and file implementing the controller to be
able to extend it.

Then, the BooksExtended class is declared based on the original one, Books. The
identifier name that's used for this class is not relevant. It is used as a vehicle to reference
the original class and extend it.

144 Extending Modules

Next, we (re)define the controller method to be extended, which is list() in this case.
It needs to be decorated with at least the simple @http.route() for its route to be kept
active. If it's used like this, with no arguments, it will preserve the routes that are defined
by the parent class. But we could also add parameters to this @http.route() decorator
to replace and redefine the class routes.

The list() method has a **kwargs argument, which captures all the parameters
in the kwargs dictionary. These are the parameters that are given in the URL, such as
?available=1.

Tip
Using a **kwargs argument that sweeps all the given arguments is not
required, but it makes our URL tolerant to unexpected URL arguments. If
we choose to specify particular arguments, if different ones are set, the page
will fail immediately and return an internal error when trying to call the
corresponding controller.

The code for the list() method starts by calling the corresponding parent class method
using super(). This returns the Response object that was computed by the parent
method, including the attributes and the template to render, template, and the context
to use when rendering, qcontext. But the HTML is yet to be generated. This will only
happen when the controller finishes running. So, it is possible to change the Response
attributes before the final rendering is done.

The method checks kwargs for a non-empty value in the available key. If it is found,
the non-available books are filtered out, and qcontext is updated with this recordset. So,
when the controller's processing completes, the HTML will be rendered using the updated
book's recordset, which will only include available books.

Extending QWeb templates
Web page templates are XML documents, just like the other Odoo view types, and selector
expressions can be used, as we do for other view types, such as forms. QWeb templates are
usually more complex since they include more HTML elements, so most of the time, the
more versatile XPath expressions are needed.

To modify the actual presentation of the web page, we should extend the QWeb template
being used. As an example of this, we will extend library_app.book_list_
template to add visual information about the books that are not available.

Extending web pages 145

A QWeb extension is a <template> element that uses the additional inherit_id
attribute to identify the QWeb template to extend. It is library_app.book_list_
template in this case.

Follow these steps:

1. Add the library_member/views/book_list_template.xml file, along
with the following code:

<odoo>

 <template id="book_list_extended"

 name="Extended Book List"

 inherit_id=

 "library_app.book_list_template">

 <xpath expr="//span[@t-field='book.publisher_id']"

 position="after">

 <t t-if="not book.is_available">

 (Not Available)

 </t>

 </xpath>

 </template>

</odoo>

The preceding example uses an xpath notation. Note that in this case,
we could have also used the equivalent simplified notation; that is, <span
t-field="book.publisher_id" position=after>.

2. Declare this additional data file in the add-on manifest; that is, library_
member/__manifest__.py:

"data": [

 "security/library_security.xml",

 "security/ir.model.access.csv",

 "views/book_view.xml",

 "views/member_view.xml",

 "views/library_menu.xml",

 "views/book_list_template.xml",

],

146 Extending Modules

After this, accessing http://localhost:8069/library/books should show the
additional (not available) visual information on the books that are not available. Here is
what the web page will look like:

Figure 4.4 – Books list web page with availability information

This completes our review of how to extend each type of Odoo component, from the data
model to the user interface elements.

Summary
Extensibility is a key feature of the Odoo framework. We can build add-on modules that
change or add features to other existing add-ons at the several layers needed to implement
features in Odoo. With this, our projects will be able to reuse and extend third-party
add-on modules in a clean and modular way.

At the model layer, we use the _inherit model attribute to get a reference to an existing
model and then make in-place modifications to it. The field objects inside the model also
support incremental definitions so that we can redeclare an existing field, providing only
the attributes to change.

Additional model inheritance mechanisms allow you to reuse data structures and business
logic. Delegation inheritance, which is activated with the delegate=True attribute on a
many-to-one relationship field (or the old-style inherits model attribute), makes all the
fields from the related model available and reuses its data structure. Prototype inheritance,
which uses _inherit with additional models, allows you to copy features (data structure
definitions and methods) from other models and enables the use of abstract mixin classes,
providing a set of reusable features, such as document discussion messages and followers.

At the view layer, the view structures are defined using XML, and extensions can be made
by locating an XML element (using XPath or the Odoo simplified syntax) and providing
the XML fragment to add. Other data records that are created by a module can also be
modified by extension modules by simply referencing the corresponding complete XML
ID and performing a write operation on the intended fields.

Further reading 147

At the business logic layer, extensions can be made with the same mechanism that's used
for model extension and redeclaring the methods to extend. Inside them, the super()
Python function is used to call the code of the inherited method, and our additional code
can run before or after that.

For the frontend web pages, the presentation logic in controllers can be extended in a
similar way to model methods, and the web templates are also views with XML structures,
so these can be extended in the same way as the other view types.

In the next chapter, we will dive deeper into models and explore everything they can
offer us.

Further reading
The following are some additional references to the official documentation, which can
provide useful information regarding module extensions and inheritance mechanisms:

• Model inheritance: https://www.odoo.com/documentation/15.0/
developer/reference/backend/orm.html

• View inheritance: https://www.odoo.com/documentation/15.0/
developer/reference/backend/views.html

• Web controllers: https://www.odoo.com/documentation/15.0/
developer/reference/backend/http.html

https://www.odoo.com/documentation/15.0/developer/reference/backend/orm.html
https://www.odoo.com/documentation/15.0/developer/reference/backend/orm.html
https://www.odoo.com/documentation/15.0/developer/reference/backend/views.html
https://www.odoo.com/documentation/15.0/developer/reference/backend/views.html
https://www.odoo.com/documentation/15.0/developer/reference/backend/http.html
https://www.odoo.com/documentation/15.0/developer/reference/backend/http.html

The second part introduces models, which are responsible for the data model structures
around which the application is built. Closely related to models, data loading techniques
and access control are also discussed.

The following chapters are included in this section:

• Chapter 5, Importing, Exporting, and Module Data

• Chapter 6, Models – Structuring the Application Data

Section 2:
Models

5
Importing, Exporting,

and Module Data
Most Odoo module definitions, such as user interfaces and security rules, are data
records that are stored in specific database tables. The XML and CSV files that are found
in modules are not used by Odoo applications at runtime. They are a means of loading
those definitions into database tables.

Because of this, an important part of Odoo modules is representing data in files so that it
can be loaded into a database upon module installation. Modules can also contain initial
data and demonstration data. Data files allow us to add that to our modules.

Additionally, understanding Odoo data representation formats is important for exporting
and importing business data within the context of a project's implementation.

The following topics will be covered in this chapter:

• Understanding the external identifier concept

• Exporting and importing data files

• Using CSV files

• Adding module data

• Using XML data files

152 Importing, Exporting, and Module Data

By the end of this chapter, you will be able to perform data exports and imports
to populate initial data into a database and automate the creation of default and
demonstration data in modules that have been created.

Technical requirements
This chapter requires you to have an Odoo server running, with the library app base
module installed.

The code for this chapter can be found in this book's GitHub repository, https://
github.com/PacktPublishing/Odoo-15-Development-Essentials, in
the ch05/ directory. It contains a copy of the original library_app that we created in
Chapter 3, Your First Odoo Application, with additional files added for this chapter.

Understanding the external identifier concept
An external identifier, also called an XML ID, is a human-readable string identifier that
uniquely identifies a particular record in Odoo. They are important for loading data into
Odoo, allowing us to modify an existing data record or reference it in other data records.

First, we will introduce how external identifiers work, and how we can inspect them.
Then, we will learn how to use the web client to find the external identifiers for particular
data records, since this is frequently needed when creating add-on modules, thus
extending existing features.

How external identifiers work
Let's begin by understanding how identifiers work. The actual database identifier for a
record is an automatically assigned sequential number, and there is no way to know ahead
of time what ID will be assigned to each record during module installation. External
identifiers let us reference a related record without the need to know the actual database
ID that's been assigned to it. The XML ID provides a convenient alias for the database ID
so that we can use it whenever we need to reference a particular record.

Records defined in Odoo module data files use XML IDs. One reason for this is to avoid
creating duplicate records when upgrading a module. The module upgrade will load the
data files into the database again. We want it to detect pre-existing records for them to be
updated, instead of creating duplicate records.

https://github.com/PacktPublishing/Odoo-15-Development-Essentials
https://github.com/PacktPublishing/Odoo-15-Development-Essentials

Understanding the external identifier concept 153

Another reason to use XML IDs is to support interrelated data: data records that need to
reference other data records. Since we can't know the actual database ID, we can use the
XML ID, so the translation will be transparently handled by the Odoo framework.

Odoo takes care of translating the external identifier names into the actual database IDs
that have been assigned to them. The mechanism behind this is quite simple: Odoo keeps
a table with the mapping between the named external identifiers and their corresponding
numeric database IDs: the ir.model.data model.

We must have Developer mode enabled to have the menu option available. Check
whether you have the Developer mode bug icon in the top right, next to the user's avatar
icon. If not, you should enable it now in the Settings top menu. Please refer to Chapter 1,
Quick Start Using the Developer Mode, for more details.

We can inspect the existing mappings using the Settings | Technical | Sequences &
Identifiers | External Identifiers menu item. For example, if we visit the external
identifiers list and filter it by the library_app module, we will see the external
identifiers that have been generated by the module we created, as shown in the following
screenshot:

Figure 5.1 – External identifiers generated by the library_app module

Here, we can see that the external identifiers have Complete ID labels. Notice how they
are composed of the module name and the identifier name, joined with a dot; for example,
library_app.action_library_book.

154 Importing, Exporting, and Module Data

External identifiers only need to be unique inside an Odoo module so that there is no risk
of two modules conflicting because of accidentally choosing the same identifier name.
The globally unique identifier is built by joining the module name with the actual external
identifier name. This is what you can see in the Complete ID field.

When using an external identifier in a data file, we can choose to use either the complete
identifier or just the external identifier name. Usually, it's simpler to just use the external
identifier name, but the complete identifier enables us to reference data records from
other modules. When doing so, make sure that those modules are included in the module
dependencies to ensure that those records are loaded before ours.

There are some cases where the complete ID is needed, even if we're referring to an XML
ID from the same module.

At the top of the list, we can see the library_app.action_library_book complete
identifier. This is the menu action we created for the module, which is also referenced in
the corresponding menu item. By clicking on it, we go to the form view, which contains
its details. There, we can see that the action_library_book external identifier in the
library_app module maps to a specific record ID in the ir.actions.act_window
model, which is 87 in this case.

By clicking on the record's line, the information can be seen in a form view, as shown in
the following screenshot:

Figure 5.2 – Form view for the library_app.action_library_book external identifier

Besides providing a way for records to easily reference other records, external identifiers
also allow you to avoid data duplication on repeated imports. If the external identifier
is already present, the existing record will be updated, avoiding a new, duplicate record
being created.

Understanding the external identifier concept 155

Finding external identifiers
When we're writing data records for our modules, we frequently need to look up the
existing external identifiers to use for our reference. So, it is important to know how to
find these identifiers.

One way to do this is to use the Settings | Technical | Sequences & Identifiers | External
Identifiers menu, which was shown earlier in Figure 5.1. We can also use the Developer
menu for this. As you may recall from Chapter 1, Quick Start Using the Developer Mode,
the Developer menu can be activated in the Settings dashboard, at the bottom right.

To find the external identifier for a data record, we should open the corresponding form
view, select the Developer menu, and then choose the View Metadata option. This will
display a dialog containing the record's database ID and external identifier (also known as
the XML ID).

For example, to look up the demo user ID, we should navigate to the users form view at
Settings | Users, open the demo user form, and then select the View Metadata option
from the Developer Tools menu. In the following screenshot, we can see that the XML ID
is base.user_demo and that the database ID is 6:

Figure 5.3 – The View Metadata dialog window

To find the external identifier for view elements, such as form, tree, search, or action, the
Developer menu is also a good source of help. For this, we can use the appropriate Edit
View option to open a form containing the details of the corresponding view. There, we
will find an External ID field, which provides the information we are looking for.

156 Importing, Exporting, and Module Data

For example, in the following screenshot, we can see that the External ID property for the
user's form view is base.view_users_form:

Figure 5.4 – The Edit View window showing the External ID property for a form view

With that, we have learned about External IDs and how they can be used as aliases to
reference database records. We have also looked at several ways to find the XML IDs that
will be needed to reference records in the data files. Next, we will learn how to create data
files where these XML IDs will be useful.

Exporting and importing CSV data files
An easy way to generate data files and get insight into what structure the files should have
is to use the built-in export feature.

With generated CSV files, we can learn about the format that's needed to import data
manually into the system, edit them to perform mass updates, or even use them to
produce demo data for our add-on modules.

In this section, we will learn about the basics of exporting and importing data from
Odoo's user interface.

Exporting data
Data exporting is a standard feature that's available in any list view. To use it, we must
pick the rows to export by selecting the corresponding checkboxes, on the far left, and
then selecting the Export option from the Action button at the top of the list.

Exporting and importing CSV data files 157

First, we should add a couple of Odoo books to the Library app, along with their
publishers and authors. For this example, we created Odoo Development
Essentials 11 and Odoo 11 Development Cookbook.

We also need to have the Contacts app installed so that we can see a Partner list view
and can export those records from there. Notice that the default view is Kanban for the
contact cards, so we need to switch to the list view:

Figure 5.5 – The Export option in the Action menu

We can also tick the checkbox in the header of the column to select all of the available
records that match the current search criteria.

The Export option takes us to the Export Data dialog form, where we can choose what
and how to export. We are concerned with exporting in a way that allows us to import
that file later, either manually or as part of an add-on module:

Figure 5.6 – The Export Data dialog window

158 Importing, Exporting, and Module Data

At the top of the dialog form, we have two selections available:

• I want to update data (import-compatible export): Enable this checkbox so that
the data is exported in a format-friendly manner for a later import.

• Export format: You can choose between CSV or XLSX here. We will choose a CSV
file to get a better understanding of the raw export format, which is still understood
by any spreadsheet application.

Next, pick the columns to export. In this example, a very simple export was done by
choosing only the Name field. By clicking on the Export button, an exported data file will
be available. The exported CSV file should look like this:

"id","name"

"__export__.res_partner_43_f82d2ecc","Alexandre Fayolle"

"__export__.res_partner_41_30a5bc3c","Daniel Reis"

"__export__.res_partner_44_6be5a130","Holger Brunn"

"__export__.res_partner_42_38b48275","Packt Publishing"

The first row contains the field names, which will be used during the import to
automatically map the columns to their destination.

The first row has the selected name column, as expected. An initial ID column was
automatically added because the import-compatible export option was selected.

The automatically added id column has the external ID assigned to each record. This
allows the exported data file to be edited and reimported later, to update the records,
instead of creating duplicated ones.

Missing external identifiers are automatically generated using the __export__ prefix,
as shown in the previous file export example.

Tip
Because of the automatically generated record identifiers, the export or import
features can be used to mass edit Odoo data – export the data to CSV, use
spreadsheet software to mass edit it, and then import it back into Odoo.

Exporting and importing CSV data files 159

Importing data
Once we have a properly formatted data file ready, we want to import it into Odoo. Let's
learn how this is can be done through the web client user interface.

First, we have to make sure that the import feature is enabled. It should be enabled by
default. If not, the option is available in the Settings app, under the General Settings menu
item. Under the Permissions section, the Import & Export option should be checked.

With this option enabled, the list view search widget will show an Import records option
in the Favorites menu, next to the Filters and Group By menus.

Note
The Import & Export setting installs the base_import module, which is
responsible for providing this feature.

Let's try performing a bulk edit on our Contact or Partner data. Open the CSV file we just
downloaded in a spreadsheet or a text editor and change a few values. We can also add
some new rows, leaving the id column blank for them.

As we mentioned previously, the first column, id, provides a unique identifier for each
row. This allows pre-existing records to be updated instead of us needing to duplicate
them when we import the data back to Odoo. If we edit any of the names in the exported
file, the corresponding record will be updated when we import the file.

For the new rows that have been added to the CSV file, we can choose to either provide an
external identifier of our choice or we can leave the id column blank. Either way, a new
record will be created for them. As an example, we added a line with no id and the name
Phillip K. Dick to be created in the database:

,Phillip K. Dick

160 Importing, Exporting, and Module Data

After saving these changes to the CSV file, click on the Import option, in the Favorites
menu. The next page allows us to upload the data file. Then, the import assistant will be
presented:

Figure 5.7 – The Import a File assistant

Here, we should select the CSV file's location on the disk and then click on the Test
button, at the top left, to check it for correctness.

Since the file to import is based on an Odoo export, there is a good chance that it will be
valid and that the columns will be automatically mapped to their proper destination in the
database. Depending on the application that's used to edit the data file, you may have to
play with the separator and encoding options to get the best results.

Now, click on Import, and there you go – the modifications and new records should have
been loaded into Odoo!

Related records in CSV data files
The examples in the previous section were quite simple, but the data files can become
more complex once we start using relational fields, linking records from several tables.

Exporting and importing CSV data files 161

Previously, we handled Partner records that were used in Books. We will now look at
how we can represent the reference for these Partners in a CSV file for book data. In
particular, we have a many-to-one (or a foreign key) relationship for the Publisher (the
publisher_id field) and a many-to-many relationship for the Authors (the author_
ids field).

In the CSV file header line, relationship columns should have /id appended to their
names. It will reference the related records using external identifiers. In our example, we
will load the book publisher into a publisher_id/id field, using the external ID for
the related partner as a value.

It is possible to use /.id instead so that we can use the actual database IDs (the real
numeric identifier that's been assigned), but this is rarely what we need. Unless you
have good reason to do otherwise, always use external IDs instead of database IDs. Also,
remember that database IDs are specific to a particular Odoo database, so, most of the
time, it won't work correctly if it's imported into a database other than the original one.

Many-to-many fields can also be imported through CSV data files. It's as easy as providing
a comma-separated list of external IDs, surrounded by double quotes. For example, to
load the book authors, we would have an author_ids/id column, where we would
use a comma-separated list of the external IDs of the Partners to link as values. Here is an
example of what a to-many field would look like in a CSV file:

id, name, author_ids/id

book_odc11, "Odoo 11 Development Cookbook", "__export__.res_
partner_43_f82d2ecc,__export__.res_partner_44_6be5a130"

One-to-many fields often represent headers or lines, or parent or child relationships, and
there is special support to import these types of relationships – for the same parent record,
we can have several related lines.

Here, we have an example of a one-to-many field in the Partners model: a company
partner can have several child contacts. If we export the data from the Partner model and
include the Contacts/Name field, we will see the structure that can be used to import this
type of data:

Figure 5.8 – Data file example importing to-many related records

162 Importing, Exporting, and Module Data

The id and name columns are for the parent records, while the child_ids columns are
for the child records. Notice how the parent record columns are left blank for the child
records after the first one.

The preceding table, which is represented as a CSV file, looks as follows:

"id","name","child_ids/id","child_ids/name"

"base.res_partner_12","Azure Interior","base.res_partner_
address_15","Brandon Freeman"

"","","base.res_partner_address_28","Colleen Diaz"

"","","base.res_partner_address_16","Nicole Ford"

Here, we can see that the first two columns, id and name, have values in the first line
and are empty in the next two lines. They have data for the parent record, which is the
Contact's Company.

The other two columns are both prefixed with child_ids/ and have values on all
three lines. They contain data for the contacts related to the parent company. The first
line contains data for both the company and the first contact, while the lines that follow
contain data for the columns of the child contacts.

Adding module data
Modules use data files to load their default data, demonstration data, user interface
definitions, and other configurations into the database. For this, we can use both CSV and
XML files.

Changes in Odoo 12
The YAML file format was also supported until Odoo 11 and was removed
in Odoo 12. Still, for a usage example, you can look at the l10n_be official
module in Odoo 11, and for information on the YAML format, you can visit
http://yaml.org/.

CSV files that are used by modules are the same as those we have seen and used for the
import feature. When using them in modules, the filename must match the name of the
model that the data will be loaded into. For example, a CSV file for loading data into the
library.book model must be named library.book.csv.

A common usage of data CSV files is for accessing security definitions that have been
loaded into the ir.model.access model. They usually use CSV files in a security/
subdirectory, named ir.model.access.csv.

http://yaml.org/

Adding module data 163

Demonstration data
Odoo add-on modules may install demonstration data, and it is considered good practice
to do so. This is useful for providing usage examples for a module and the datasets to be
used in tests. Demonstration data for a module is declared using the demo attribute of the
__manifest__.py manifest file. Just like the data attribute, it is a list of filenames with
the corresponding relative paths inside the module.

Some demonstration data should be added to the library.book module. An easy
way to do this is to export some data from the development database with the module
installed.

The convention is to place data files in a data/ subdirectory. We should save these
data files in the library_app add-on module as data/library.book.csv. Since
this data will be owned by our module, we should edit the id values to remove the __
export__ prefix in the identifiers that are generated by the export feature.

As an example, our res.partner.csv data file might look as follows:

id,name

res_partner_alexandre,"Alexandre Fayolle"

res_partner_daniel,"Daniel Reis"

res_partner_holger,"Holger Brunn"

res_partner_packt,"Packt Publishing"

The library.book.csv data file containing the Book demo data will look as follows:

"id","name","date_published","publisher_id/id","author_ids/id"

library_book_ode11,"Odoo Development Essentials 11","2018-03-
01",res_partner_packt,res_partner_daniel

library_book_odc11,"Odoo 11 Development Cookbook","2018-01-
01",res_partner_packt,"res_partner_alexandre,res_partner_
holger"

Do not forget to add these data files to the __manifest__.py manifest's demo
attribute:

"demo": [

 "data/res.partner.csv",

 "data/library.book.csv",

],

164 Importing, Exporting, and Module Data

The files are loaded in the order they are declared. This is important since records in a file
cannot reference other records that haven't been created yet.

The next time the module is updated, the content of the file will be imported, so long as it
is installed with the demo data enabled.

Note
While data files are also re-imported on module upgrades, this is not the case
for the demo data files: these are only imported upon module installation.

Of course, XML files can also be used to load or initialize data, leveraging the additional
features they provide, compared to plain CSV files. In the next section, we will discuss
using data files in XML format.

Using XML data files
While CSV files provide a simple and compact format to represent data, XML files
are more powerful and give more control over the loading process. For example, their
filenames are not required to match the model to be loaded. This is because the XML
format is much richer and more information regarding what to load can be provided
through the XML elements inside the file.

We used XML data files in the previous chapters. The user interface components, such as
the views and menu items, are, in fact, records that are stored in system models. The XML
files in the modules are used to load these records into the instance database.

To showcase this, a second data file will be added to the library_app module, data/
book_demo.xml, with the following content:

<?xml version="1.0"?>

<odoo noupdate="1">

 <!-- Data to load -->

 <record model="res.partner" id="res_partner_huxley">

 <field name="name">Aldous Huxley</field>

 </record>

 <record model="library.book" id="library_book_bnw">

 <field name="name">Brave New World</field>

 <field name="author_ids"

 eval="[(4, ref('res_partner_huxley'))]" />

 <field name="date_published">1932-01-01</field>

Using XML data files 165

 </record>

</odoo>

As usual, the new data file must be declared in the __manifest__.py file:

"demo": [

 "data/res.partner.csv",

 "data/library.book.csv",

 "data/book_demo.xml",

],

Similar to the CSV data file we saw in the previous section, this file also loads data into the
Library Books model.

XML data files have an <odoo> top element, inside of which there can be several
<record> elements, which are the equivalent to data rows in CSV files.

Note
The <odoo> top element in data files was introduced in version 9.0 and
replaces the former <openerp> tag. A <data> section inside the top
element is still supported, but it's now optional. In fact, now, <odoo> and
<data> are equivalent, so we could use either one as the top element for our
XML data files.

A <record> element has two mandatory attributes, model and id, for the external
identifier for the record, and contains a <field> tag for each field to write on.

Note that the slash notation in the field names is not available here; we can't use <field
name="publisher_id/id">. Instead, the ref special attribute is used to reference
external identifiers. We'll discuss the values of the relational to-many fields in a moment.

You may have noticed the noupdate="1" attribute in the top <odoo> element. This
prevents the data records from being loaded on module upgrades so that any later edits
that are made to them are not lost.

The noupdate data attribute
When a module is upgraded, the data file loading is repeated, and the module's records
are rewritten. This means that upgrading a module will overwrite any manual changes that
might have been made to the module's data.

166 Importing, Exporting, and Module Data

Tip
Notably, if views were manually modified to add quick customizations, these
changes will be lost with the next module upgrade. To avoid this, the correct
approach is to create inherited views with the changes we want to introduce.

This rewrite behavior is the default, but it can be changed so that some of the data is only
imported at install time, and is ignored in later module upgrades. This can be done using
the noupdate="1" attribute in the <odoo> or <data> elements.

This is useful for data that is to be used for the initial configuration but is expected to be
customized later since these manually made customizations will be safe from module
upgrades. For example, it is frequently used for record access rules, allowing them to be
adapted to implementation-specific needs.

It is possible to have more than one <data> section in the same XML file. We can take
advantage of this to separate data to import only once, with noupdate="1", and data
that can be re-imported on each upgrade, with noupdate="0". noupdate="0" is
the default, so we can just omit it if we prefer. Note that we need to have a top-level XML
element, so in this case, we will use two <data> sections. They must be inside a top-level
<odoo> or <data> element.

Tip
The noupdate attribute can be tricky when we're developing modules
because changes that are made to the data later will be ignored. One solution
is to, instead of upgrading the module with the -u option, reinstall it using the
-i option. Reinstalling from the command line using the -i option ignores
the noupdate flags on data records.

The noupdate flag is stored in the External Identifier information for each record. It's
possible to manually edit it directly using the External Identifier form, which is available
in the Technical menu, by using the Non Updatable checkbox.

Changes in Odoo 12
In Developer Menu, when accessing View Metadata, the dialog box now
also shows the value for the No Update flag, along with the record's XML ID.
Furthermore, No Update flag can be changed there by clicking on it.

Using XML data files 167

Defining records in XML
In an XML data file, each <record> element has two basic attributes, id and model,
and contains <field> elements that assign values to each column. The id attribute
corresponds to the record's external identifier, while the model attribute corresponds to
the target model. The <field> elements have a few different ways to assign values. Let's
look at them in detail.

Setting field values directly
The name attribute of a <field> element identifies the field to write on.

The value to write is the element's content: the text between the field's opening and
closing tag. For dates and date-times, eval attributes with expressions that return
date or datetime objects will work. Returning strings with "YYYY-mm-dd" and
"YYYY-mm-dd HH:MM:SS" will be converted properly. For boolean fields, the "0"
and "False" values are converted into False, and any other non-empty values will be
converted into True.

Changes in Odoo 10
The way Boolean False values are read from data files has been improved
in Odoo 10. In previous versions, any non-empty values, including "0" and
"False", were converted into True. Until Odoo 9, Boolean values should
be set using the eval attribute, such as eval="False".

Setting values using expressions
A more elaborate alternative for setting a field value is using the eval attribute. It
evaluates a Python expression and assigns the result to the field.

The expression is evaluated in a context that, besides Python built-ins, also has some
additional identifiers that are available to build the expression to evaluate.

To handle dates, the following Python modules are available: time, datetime,
timedelta, and relativedelta. They allow you to calculate date values, something
that is frequently used in demonstrations and test data so that the dates used are close to
the module installation date. For more information about these Python modules, see the
documentation at https://docs.python.org/3/library/datatypes.html.

For example, to set a value to yesterday, we can use the following code:

<field name="date_published"

 eval="(datetime.now() + timedelta(-1))" />

https://docs.python.org/3/library/datatypes.html

168 Importing, Exporting, and Module Data

Also available in the evaluation context is the ref() function, which is used to translate
an external identifier into the corresponding database ID. This can be used to set values
for relational fields. Here is an example:

<field name="publisher_id" eval="ref('res_partner_packt')" />

This example sets a value for the publisher_id field using the eval attribute. The
evaluated expression is Python code that uses the special ref() function, which is used
to translate an XML ID into the corresponding database ID.

Setting values on many-to-one relationship fields
For many-to-one relationship fields, the value to write is the database ID for the linked
record. In XML files, we usually know the XML ID for the record, and we need to have it
translated into the actual database ID.

One way to do this is to use the eval attribute with a ref() function, like we just did in
the previous section.

A simpler alternative is to use the ref attribute, which is available for <field> elements;
for example:

<field name="publisher_id" ref="res_partner_packt" />

This example sets a value for the publisher_id many-to-one field, referencing the
database record with an XML ID of res_partner_packt.

Setting values on to-many relationship fields
For one-to-many and many-to-many fields, instead of a single ID, a list of related IDs is
expected. Furthermore, several operations can be performed – we may want to replace the
current list of related records with a new one, or append a few records to it, or even unlink
some records.

To support write operations on to-many fields, we can use a special syntax in the eval
attribute. To write to a to-many field, we can use a list of triples. Each triple is a write
command that does different things based on the code that was used in the first element.

To overwrite the list of authors of a book, we would use the following code:

<field name="author_ids"

 eval="[(6, 0,

 [ref('res_partner_alexandre'),

 ref('res_partner_holger')]

Using XML data files 169

)]"

/>

To append a linked record to the current list of the authors of a book, we would use the
following code:

<field name="author_ids"

 eval="[(4, ref('res_partner_daniel'))]"

/>

The preceding examples are the most common. In both cases, we used just one command,
but we could chain several commands in the outer list. The append (4) and replace
(6) commands are the most used. In the case of append (4), the last value of the
triple is not used and is not needed, so it can be omitted, as we did in the preceding code
sample.

The complete list of available to-many write commands is as follows:

• (0, _ , {'field': value}) creates a new record and links it to this one.

• (1, id, {'field': value}) updates the values on an already linked record.

• (2, id, _) removes the link to and deletes the id-related record.

• (3, id, _) removes the link to, but does not delete, the id-related record. This is
usually what you will use to delete related records on many-to-many fields.

• (4, id, _) links an already existing record. This can only be used for many-to-
many fields.

• (5, _, _) removes all the links, without deleting the linked records.

• (6, _, [ids]) replaces the list of linked records with the provided list.

The _ underscore symbol that was used in the preceding list represents irrelevant values,
usually filled with 0 or False.

Tip
The trailing irrelevant values can be safely omitted. For example, (4, id,
_) can be used as (4, id).

In this section, we learned how to use the <record> tag to load records into the
database. As an alternative, there are a few shortcut tags that can be used in place of a
regular <record> tag. The next section will introduce these to us.

170 Importing, Exporting, and Module Data

Shortcuts for frequently used models
If we go back to Chapter 3, Your First Odoo Application, we will find elements other than
<record> in the XML files, such as <menuitem>.

These are convenient shortcuts for frequently used models, with a more compact notation
compared to the regular <record> elements. They are used to load data into base models
that support the user interface, and they will be explored in more detail later, in Chapter
10, Backend Views – Designing the User Interface.

For reference, these are the shortcut elements available, along with the corresponding
models they load data into:

• <menuitem> is for the menu items model, ir.ui.menu.

• <template> is for QWeb templates stored in the ir.ui.view model.

Changes in Odoo 14
Past versions of Odoo used to support additional shortcut tags, which are not
supported anymore. There was an <act_window> for the window action
model, ir.actions.act_window, and a <report> for the report
action model, ir.actions.report.xml.

It is important to note that, when used to modify existing records, the shortcut elements
overwrite all the fields. This differs from the <record> basic element, which only writes
to the fields provided. So, for cases where we need to modify just a particular field of a
user interface element, we should do so using a <record> element instead.

Using other actions in XML data files
So far, we have seen how to add or update data using XML files. But XML files also allow
you to delete data and execute arbitrary model methods. This can be useful for more
complex data setups. In the following sections, we will learn how the delete and function
call XML features can be used.

Deleting records
To delete a data record, we can use the <delete> element, providing it with either an ID
or a search domain to find the target records.

For example, using a search domain to find the record to delete looks as follows:

<delete

 model="res.partner"

Using XML data files 171

 search="[('id','=',ref(

 'library_app.res_partner_daniel'))]"

/>

If we know the specific ID to delete, we can use it with the id attribute instead. This was
the case for the previous example, so it could also be written like this:

<delete model="res.partner" id="library_app.res_partner_daniel"
/>

This has the same effect as the previous example. Since we know the ID to look for, instead
of using the search attribute with a domain expression, we can simply use the id
attribute with the XML ID.

Calling model methods
An XML file can also execute arbitrary methods during its load process through the
<function> element. This can be used to set up demo and test data.

For example, the Notes app, which is bundled with Odoo, uses it to set up demonstration
data:

<data noupdate="1">

<function

 model="res.users"

 name="_init_data_user_note_stages"

 eval="[]" />

</data>

This calls the _init_data_user_note_stages method of the res.users model,
passing no arguments. The argument list is provided by the eval attribute, which is an
empty list in this case.

This completes everything we need to know to use XML data files. We provided an
overview of <data> elements and the noupdate flag. We then learned how to use the
<record> element to load data records, as well as how to set values on related fields. We
also learned about record shortcuts, such as <menuitem> and <template>. Finally, we
learned how to delete records and make arbitrary function calls with the <delete> and
<function> elements.

With this, we should be prepared to use XML data files for whatever data needs our
project might have.

172 Importing, Exporting, and Module Data

Summary
In this chapter, we learned how to represent data in text files. These can be used
to manually import data into Odoo or include it in add-on modules as default or
demonstration data.

At this point, we should be able to export and import CSV data files from the web
interface and leverage external IDs to detect and update records that already exist in
the database. They can also be used to perform a mass edit on data, by editing and
reimporting a CSV file that has been exported from Odoo.

We also learned about how XML data files are structured, and all the features they
provide, in more detail. These were not only set values on fields but also actions such as
deleting records and calling model methods.

In the next chapter, we will focus on how to use records to work with the data contained in
models. This will give us the necessary tools to then implement our application's business
logic and rules.

Further reading
The official Odoo documentation provides additional resources on data files: https://
www.odoo.com/documentation/15.0/developer/reference/backend/
data.html.

https://www.odoo.com/documentation/15.0/developer/reference/backend/data.html
https://www.odoo.com/documentation/15.0/developer/reference/backend/data.html
https://www.odoo.com/documentation/15.0/developer/reference/backend/data.html

6
Models – Structuring
the Application Data

In this chapter, we will learn more about the model layer and how to use models to design
the data structures that support applications. We will explore the available model types,
when each should be used, and how to define constraints that enforce data validations.

Models are composed of data fields that support several data types, and some field types
support defining relationships between models. More advanced usage of fields involves
having values automatically computed using specific business logic.

The following topics will be covered in this chapter:

• Learning project – improving the Library app

• Creating models

• Creating fields

• Relationships between models

• Computed fields

• Model constraints

• Overview of the Odoo base models

174 Models – Structuring the Application Data

Throughout these topics, you will learn how to create non-trivial data structures for your
Odoo projects. By the end of this chapter, you should have a clear overview of all the
relevant features needed to structure data models.

Technical requirements
This chapter is based on the code we created in Chapter 3, Your First Odoo Application.
This code can be found in the ch06/ directory of this book's GitHub repository
at https://github.com/PacktPublishing/Odoo-15-Development-
Essentials.

You should have it in your add-ons path. Make sure that you install the library_app
module.

Learning project – improving the Library app
In Chapter 3, Your First Odoo Application, we created the library_app add-on module
and implemented the simple library.book model to represent a book catalog. In this
chapter, we will revisit that module to enrich the data that we can store for each book.

We will add a category hierarchy to use for book categorization with the following
structure:

• Name: The category title

• Parent: The parent category that it belongs to

• Subcategories: The categories that have this one as the parent

• Featured book or author: A selected book or author that represents this category

A few more fields will be added to showcase the different data types available for Odoo
fields. We will also use model constraints to implement a few validations on the Books
model:

• The title and publication date should be unique.

• ISBNs entered should be valid.

We will start by revisiting Odoo models, now in more depth, to learn about all the options
that are available for us.

https://github.com/PacktPublishing/Odoo-15-Development-Essentials
https://github.com/PacktPublishing/Odoo-15-Development-Essentials

Creating models 175

Creating models
Models are at the heart of the Odoo framework. They describe the application data
structures and are the bridge between the application server and the database storage.
Business logic can be implemented around models to provide application features, and
user interfaces are created on top of them to provide the user experience.

In the following subsections, we will learn about the model's generic attributes, which are
used to influence their behavior, and the several types we have available – regular models,
transient models, and abstract models.

Model attributes
Model classes can use additional attributes to control some behaviors. These are the most
commonly used attributes:

• _name: This is the internal identifier for the Odoo model we are creating. This is
mandatory when creating a new model.

• _description: This is a user-friendly title that can be used to refer to a single
Model record, such as Book. This is optional but recommended. If this is not set,
a server log warning will be displayed during the loading sequence.

• _order: This sets the default order to use when the model's records are browsed,
or shown in a list view. It is a text string to be used as the SQL order by clause, so it
can be anything you could use there, although it has smart behavior and supports
translatable and many-to-one field names.

Our Book model is already using the _name and _description attributes. The
following code adds the _order attribute to have the default order by book title, and then
by reverse order of publication date (from newest to oldest):

class Book(models.Model):

 _name = "library.book"

 _description = "Book"

 _order = "name, date_published desc"

There are a few more advanced attributes available that can be helpful in advanced cases:

• _rec_name: This sets the field to use for the record's display name. By default, it
is the name field, which is why we usually choose this particular field name for the
records title field.

176 Models – Structuring the Application Data

• _table: This is the name of the database table supporting the model. Usually,
it is left to be automatically set by the ORM, which will use the model name after
replacing the dots with underscores. However, we are free to choose a specific
database table name to be used.

• _log_access=False: This can be used to prevent audit tracking fields from
being automatically created; that is, create_uid, create_date, write_uid,
and write_date.

• _auto=False: This prevents the underlying database table from being
automatically created. In this case, we should use the init() method to provide
our specific logic for creating the supporting database object, a table, or a view. This
is usually used for views that support read-only reports.

As an example, the following code sets the default values on the library.book model:

 _recname = "name"

 _table = "library_book"

 _log_access = True

 _auto = True

Note
There are also the _inherit and _inherits attributes, which are used
for module extension. These were explained in detail in Chapter 4, Extending
Modules.

When using _auto = False, we are overriding the process of creating the database
object, so we should provide the logic for that. A frequent application of this is models to
use for reports, based on a database view that gathers all the data needed for the report.

Here is an example taken from the sale core module, in the sale/report/sale_
report.py file:

 def init(self):

 tools.drop_view_if_exists(self.env.cr, self._table)

 self.env.cr.execute(

 "CREATE or REPLACE VIEW %s as (%s)"

 % (self._table, self._query())

)

The preceding code uses a tools Python module, which needs to be imported using
odoo import tools.

Creating models 177

Models and Python classes
Odoo models use Python classes. In the preceding code, we can see a Python class,
Book, based on the models.Model class, being used to define an Odoo model named
library.book.

Odoo models are kept in a central registry, available through the environment object,
which is usually accessed using self.env. The central registry keeps references to all the
models available, and they can be accessed with a dictionary-like syntax.

For example, to get a reference to the library book model inside a method, we could use
self.env["library.book"] or self.env.get(["library.book"]).

As you can see, model names are important and are the key to accessing the model
registry.

Model names must be globally unique. Because of this, it is a good practice to use the first
word of the application the module belongs to as the first word in the model's name. In
the case of the Library app, all model names should have library as a prefix. Other
examples from the core modules are project, crm, or sale.

Tip
Model names should use the singular form, library.book, rather than
library.books. The convention is to use a list of lowercase words joined
with dots. The first word should identify the main app the model belongs
to, such as library.book or library.book.category. Other
examples that have been taken from official add-ons include project.
project, project.task, and project.task.type.

On the other hand, Python class identifiers are local to the Python file where they are
declared and are not relevant to the Odoo framework. The identifier that's used for them
is only significant for the code in that file and is rarely relevant. The Python convention for
class identifiers is to use CamelCase, following the standards defined by the PEP8 coding
conventions.

There are several types of models available. The most frequently used one is the models.
Model class, for persistent database stored models. Next, we will learn about the other
available model types.

178 Models – Structuring the Application Data

Transient and abstract models
For most Odoo models, the Python class is based on models.Model. This type of model
has permanent database persistence, which means that database tables are created for
them and their records are stored until they're explicitly deleted. And most of the time,
this is what you need.

But in some cases, we don't need permanent database persistence, and hence these two
other model types can be useful:

• Transient models, based on models.TransientModel, are used for wizard-
style user interaction. Their data is still stored in the database, but it is expected
to be temporary. A vacuum job periodically clears old data from these tables.
For example, the Settings | Translations | Import Translation menu option
opens a dialog window that uses a transient model to store the user selections
and implement the wizard logic. An example of using a transient model will be
discussed in Chapter 8, Business Logic – Supporting Business Processes.

• Abstract models are based on the models.AbstractModel class and have no
data storage attached to them. They can be used as reusable feature sets, to be mixed
in with other models using Odoo's inheritance capabilities. For example, mail.
thread is an abstract model provided by the Discuss app, which is used to add
messages and follower features to other models. Mixin classes that use abstract
models and the mail.thread example mentioned previously were discussed in
Chapter 4, Extending Modules.

Inspecting existing models
The models and fields that are created by Python classes can be inspected through the
user interface. With Developer Mode enabled, via the Settings top menu, navigate to the
Technical | Database Structure | Models menu item. Here, you will find a list of all the
models available in the database.

Clicking on a model in the list will open a form showing its details, as shown in the
following screenshot:

Creating models 179

Figure 6.1 – Inspecting the Book model from the Technical menu

This is a good tool for inspecting a model since it shows the results of all the modifications
made by different modules. At the top right of the form, in the In Apps field, we can
see the list of modules affecting it. In this example, we can see that library.book is
affected by the library_app and library_member modules.

Tip
As seen in Chapter 1, Quick Start Using Developer Mode, the Models form
is editable! It is possible to create and modify models, fields, and views from
here. You can use this to build prototypes that will be implemented as add-on
modules later.

In the lower area, we have some tabs with additional information available:

• Fields lists the model fields.

• Access Rights lists the access control rules granted to security groups.

• Record Rules lists the record rules applying filters to records.

• Notes is the model definition docstring.

• Views lists the views available for the model.

180 Models – Structuring the Application Data

To find the model's external identifier or XML ID, we can use the Developer menu's View
Metadata option. Model external identifiers are automatically generated by the ORM and
follow a simple rule – the model name, replacing dots with underscores, prefixed with
model_. As an example, the identifier that's generated for the library.book model,
as created by the library_app module, is library_app.model_library_book.
These XML IDs are usually needed for the CSV files defining the security ACLs.

We are now familiar with the options we have for defining the model. The next step is to
understand the several field types, as well as the options available to configure them.

Creating fields
Having created a new model, the next step is to add fields to it. Odoo supports all the
basic data types that are expected, such as text strings, integers, floating-point numbers,
Booleans, dates and time, and image or binary data.

Let's explore the several types of fields available in Odoo.

Basic field types
We will go back to the book model to present the several available field types.

In the library_app/models/library_book.py file, edit the Book class, replacing
the current field definitions with this one:

class Book(models.Model):

 _name = "library.book"

 _description = "Book"

 # String fields:

 name = fields.Char("Title")

 isbn = fields.Char("ISBN")

 book_type = fields.Selection(

 [("paper","Paperback"),

 ("hard","Hardcover"),

 ("electronic","Electronic"),

 ("other", "Other")],

 "Type")

Creating fields 181

 notes = fields.Text("Internal Notes")

 descr = fields.Html("Description")

 # Numeric fields:

 copies = fields.Integer(default=1)

 avg_rating = fields.Float("Average Rating", (3, 2))

 price = fields.Monetary("Price", "currency_id")

 # price helper

 currency_id = fields.Many2one("res.currency")

 # Date and time fields:

 date_published = fields.Date()

 last_borrow_date = fields.Datetime(

 "Last Borrowed On",

 default=lambda self: fields.Datetime.now())

 # Other fields:

 active = fields.Boolean("Active?")

 image = fields.Binary("Cover")

 # Relational Fields

 publisher_id = fields.Many2one(

 "res.partner", string="Publisher")

 author_ids = fields.Many2many(

 "res.partner", string="Authors")

These are examples of the non-relational field types that are available in Odoo with the
positional arguments expected by each one. Next, we will explain all these field types
and options.

182 Models – Structuring the Application Data

Tip
Python functions can have two types of arguments: positional and keyword.

Positional arguments are expected to be used in a specific order. For example,
the call to fn(x, y) should be something such as f(1, 2).

Keyword arguments are passed with the name of the argument. For this same
function, we could also use f(x=1, y=2), or even mix both styles, with
something such as f(1, y=2).

However, note that positional arguments must come before keyword
arguments, so f(x=1, 2) is not allowed. More information on
keyword arguments can be found in the Python official documentation at
https://docs.python.org/3/tutorial/controlflow.
html#keyword-arguments.

As a general rule, the first positional argument is the field title, which corresponds to the
string keyword argument. The exception to this rule is the Selection fields and all the
relational fields.

The string attribute is used as the default text for the user interface labels. If the
string attribute is not provided, it will be automatically generated from the field name,
replacing underscores with spaces and capitalizing the first letter in each word. For
example, the date_published default label is Date Published.

For reference, this is the list of all the non-relational field types that are available, along
with the positional arguments expected by each:

• Char(string) is a simple text field. The only positional argument that's expected
is the field label.

• Text(string) is a multiline text field. The only positional argument is also the
field label.

• Selection(selection, string) is a drop-down selection list. The selection
positional arguments is a [("value", "Description"),] list of tuples.
For each pair, the first element is the value stored in the database, and the second
element is the description presented in the user interface. Extension modules can
add options to this list using the selection_add keyword argument.

• Html(string) is stored as a text field but has specific handling for the user
interface for HTML content presentation. For security reasons, it is sanitized by
default, but this behavior can be overridden using the sanitize=False attribute.

• Integer(string) is for integer numbers and expects a string argument for the
field label.

https://docs.python.org/3/tutorial/controlflow.html#keyword-arguments
https://docs.python.org/3/tutorial/controlflow.html#keyword-arguments

Creating fields 183

• Float(string, digits) stores floating-point numbers and has a second
optional argument for the precision to use. This is an (n, d) tuple, where n is the
total number of digits, and d is the number of those digits used for decimals.

• Monetary(string, currency_field) is similar to a float field but
has specific handling for currency values. The currency_field second
argument is for the name of the currency field. By default, it is set to currency_
field="currency_id".

• The Date(string) and Datetime(string) fields are for dates and date-time
values. They only expect the label text as a positional argument.

• Boolean(string) stores True or False values and has one positional argument
for the label text.

• Binary(string) stores binary data, including images, and expects the string
label positional argument.

These field definitions provide the basic parameters that are usually used. Note that there
are no required arguments, and Odoo will use reasonable defaults for the missing ones.

Changes in Odoo 12
The Date and Datetime fields are now handled in the ORM as Python
date objects. In previous versions, they were handled as text representations.
Because of this, when manipulated, an explicit conversion into a Python date
object was needed, which would have to be converted back into a text string
after.

Text-based fields, including Char, Text, and Html, have a few specific attributes:

• size (only for Char fields) sets the maximum allowed size. It is recommended to
not use it unless there is a good reason for it; for example, a social security number
with a maximum length allowed.

• translate=True makes the field contents translatable, holding different values
for different languages.

• trim is set to True by default and automatically trims the surrounding white
space, which is performed by the web client. This can be explicitly disabled by
setting trim=False.

Changes in Odoo 12
The trim field attribute was introduced in Odoo 12. In previous versions, text
fields were saved along with the white space.

184 Models – Structuring the Application Data

Additionally, we also have relational field types available. These will be explained later in
this chapter, in the Relationships between models section.

Before we get to that, however, there is still more to know about the attributes of the basic
field types, as explained in the next section.

Common field attributes
So far, we have looked at the basic positional arguments available for several basic field
types. However, there are more attributes available to us.

The following keyword argument attributes are generally available to all field types:

• string is the field's default label, to be used in the user interface. Except for
Selection and relational fields, it is available as the first positional argument,
so most of the time, it is not used as a keyword argument. If it's not provided, it is
automatically generated from the field name.

• default sets a default value for the field. It can be a fixed value (such as
default=True in the active field), or a callable reference, either the named
function reference or a lambda anonymous function.

• help provides the text for tooltips that are displayed to users when hovering the
mouse over the field in the UI.

• readonly=True makes the field not editable in the user interface by default.
This is not enforced at the API level: code in model methods will still be capable
of writing to it, and a view definition can override this. It is only a user interface
setting.

• required=True makes the field mandatory in the user interface by default.
This is enforced at the database level by adding a NOT NULL constraint to the
database column.

• index=True adds a database index to the field, for faster search operations at the
expense of disk space usage and slower write operations.

• copy=False has the field ignored when duplicating a record via the copy()
ORM method. Field values are copied by default, except for to-many relational
fields, which are not copied by default.

• deprecated=True marks the field as deprecated. It will still work as usual, but
any access to it will write a warning message to the server log.

Creating fields 185

• groups allows you to limit the field's access and visibility to only some groups.
It expects a comma-separated list of XML IDs for security groups; for example,
groups="base.group_user,base.group_system".

• states expects dictionary mapping values for UI attributes,
depending on the values of the state field. The attributes that can
be used are readonly, required, and invisible; for example,
states={'done':[('readonly',True)]}.

Tip
Note that the states field attribute is equivalent to the attrs attribute in
views. Also, views support a states attribute that has a different use: it is a
comma-separated list of states in which the view element should be visible.

Here is an example of the name field with all the available keyword arguments spelled out:

 name = fields.Char(

 "Title",

 default=None,

 help="Book cover title.",

 readonly=False,

 required=True,

 index=True,

 copy=False,

 deprecated=True,

 groups="",

 states={},

)

Previous Odoo versions supported the oldname="field" attribute, which is used
when a field is renamed in a newer version. It enabled the data in the old field to be
automatically copied into the new field during the module upgrade process.

Changes in Odoo 13
The oldname field attribute was removed and is no longer available. The
alternative is to use migration scripts.

The preceding field attributes are generic and apply to all field types. Next, we will learn
how to set default values on fields.

186 Models – Structuring the Application Data

Setting default values
As we mentioned previously, the default attribute can have a fixed value or a reference
to a function to dynamically compute the default value.

For trivial computations, we can use a lambda function to avoid the overhead of creating
a named method function. Here is a common example of computing a default value with
the current date and time:

 last_borrow_date = fields.Datetime(

 "Last Borrowed On",

 default=lambda self: fields.Datetime.now(),

)

The default value can also be a function reference. This can be a name reference or
a string with the function name.

The following example uses a name reference to the _default_last_borrow_date
function method:

 def _default_last_borrow_date(self):

 return fields.Datetime.now()

 last_borrow_date = fields.Datetime(

 "Last Borrowed On",

 default=_default_last_borrow_date,

)

And this example does the same, but uses a string with the function name:

 last_borrow_date = fields.Datetime(

 "Last Borrowed On",

 default="_default_last_borrow_date",

)

 def _default_last_borrow_date(self):

 return fields.Datetime.now()

With this latter method, the function name resolution is delayed at runtime, rather than
Python file loading time. So, in the second example, we can reference a function declared
later in the code, while in the first example, the function must be declared before the
function declaration.

Creating fields 187

Still, the general code convention here is to have the default value function defined before
the field's definitions. Another argument for preferring the first approach, using the
function name reference, is that code editors can detect typing errors if they support static
code analysis.

Automatic field names
Some field names are special, either because they are reserved by the ORM for special
purposes, or because some built-in features make use of some default field names.

The id field is reserved to be used as an automatic number, uniquely identifying each
record, and is used as the database's primary key. It is automatically added to every model.

The following fields are automatically created on new models unless the _log_
access=False model attribute is set:

• create_uid is for the user who created the record.

• create_date is for the date and time when the record is created.

• write_uid is for the last user to modify the record.

• write_date is for the last date and time when the record was modified.

The information in these fields is available in the web client when in a form view if you go
to the Developer Mode menu and then click the View Metadata option.

The preceding field names have a special meaning for the Odoo framework. Other than
these, there are a few more field names that are used as defaults for some Odoo features.
The next section describes them.

Reserved field names
Some built-in API features expect specific field names by default. These are considered
reserved field names, and we should avoid using them for purposes other than the
expected ones.

These are the reserved fields:

• name or x_name of the Char type: These are used by default as the display name
for the record. But a different field can be used for the display name by setting the
_rec_name model attribute. Non-character field types are also known to work for
this, and a number to text conversion will be forced for this.

188 Models – Structuring the Application Data

• active or x_active of the Boolean type: These allow you to deactivate records,
making them invisible. Records with active=False are automatically excluded
from queries unless the {'active_test': False} key is added to the
environmental context. It can be used as a record archive or soft delete feature.

• state of the Selection type: This represents basic states for the record life cycle.
It enables the usage of the states field attribute to dynamically set the readonly,
required, or invisible attributes; for example, states={'draft':
[('readonly', False)]}.

• parent_id of the Many2one type: This is used to define tree-like hierarchical
structures, and enables the usage of the child_of and parent_of operators in
domain expressions. The field to use as parent_id can be set to a different one
using the _parent_name model attribute.

• parent_path of the Char type: This can be used to optimize the usage of
the child_of and parent_of operators in domain expressions. For proper
operation, use add index=True to use a database index. We will discuss
hierarchical relations later in this chapter, in the Hierarchical relationships section.

• company_id of the Many2one type: This is used to identify the company that
the record belongs to. An empty value means that the record is shared between
companies. It is used by internal checks on company data consistency via the _
check_company function.

Changes in Odoo 14
x_active is now recognized as an equivalent to the active field and
can be used for the same effect. This was introduced for better support for
customizations using Developer Mode or the Odoo Studio app.

So far, we have discussed non-relational fields. But a good part of an application data
structure is about describing the relationships between entities. Let's look at that now.

Relationships between models
Non-trivial business applications need to use relationships between the different entities
involved. To do this, we need to use relational fields.

Relationships between models 189

Looking at the Library app, the Book model has the following relationships:

• Each book can have one publisher, and each publisher can have many books. From
the book's point of view, this is a many-to-one relationship. It is implemented in the
database as an integer field, holding the ID of the related publisher record, and a
database foreign key in it, enforcing referential integrity.

• The reverse of this, from the publisher's point of view, is a one-to-many relation,
meaning that each publisher can have many books. While this is also a field type
in Odoo, its database representation relies on the many-to-one relationship. We
know the books related to a publisher running a query on books, filtered by the
publisher ID.

• Each book can have many authors, and each author can have many books. This
is a many-to-many relationship. The inverse relationship is also a many-to-many
relationship. In relational databases, many-to-many relationships are represented
through a helper database table. Odoo will automatically take care of this, although
we can have some control over the technical details if we want.

We will explore each of these relationships in the following sections.

A particular case is hierarchical relations, where records in a model are related to other
records in the same model. We will introduce a book category model to explain this.

Finally, the Odoo framework also supports flexible relationships, where the same field
is capable of representing relationships with several different models. These are called
Reference fields.

Many-to-one relationships
A many-to-one relationship is a reference to a record in another model. For example,
in the library book model, the publisher_id field represents a reference to the book
publisher – a record in the Partner model.

As a reminder, this is the publisher field definition using positional arguments only:

 publisher_id = fields.Many2one(

 "res.partner", "Publisher")

190 Models – Structuring the Application Data

The preceding Many2one field definition uses positional arguments:

• The first positional argument is the related model, corresponding to the comodel
keyword argument, which is res.partner in this case.

• The second positional argument is the field label, corresponding to the string
keyword argument. This is not the case for the other relational fields, so the
preferred option is to always use string as a keyword argument.

A many-to-one model field creates a column in the database table, with a foreign key to
the related table, and holds the database ID of the related record.

Keyword arguments can be used instead of, or to complement, the positional argument.
These are the keyword arguments that are supported by many-to-one fields:

• ondelete: This defines what happens when the related record is deleted. The
possible behaviors are as follows:

set null (the default): An empty value is set when the related record is deleted.

restricted: This raises an error, preventing the deletion.

cascade: This will also delete this record when the related record is deleted.
• context: This is a dictionary of data that's meaningful for the web client views

to carry information when navigating through the relationship, such as to set
default values. This will be explained in more detail in Chapter 8, Business Logic –
Supporting Business Processes.

• domain: This is a domain expression – a list of tuples used to filter the records
made available for selection on the relationship field. See Chapter 8, Business Logic –
Supporting Business Processes, for more details.

• auto_join=True: This allows the ORM to use SQL joins when doing searches
using this relationship. If used, the access security rules will be bypassed, and the
user could have access to related records that the security rules would not allow, but
the SQL queries will run faster.

• delegate=True: This creates a delegation inheritance with the related model.
When used, the required=True and ondelete="cascade" attributes must
also be set. See Chapter 4, Extending Modules, for more information on delegation
inheritance.

Relationships between models 191

One-to-many inverse relationships
A one-to-many relationship is the inverse of the many-to-one relationship. It lists the
records that have a relationship with this record.

For example, in the library book model, the publisher_id field has a many-to-one
relationship with the partner model. This means that the partner model can have a
one-to-many inverse relationship with the book model, listing the books published by
each partner.

Before a one-to-many relationship field can be created, the inverse many-to-one field
should be added to the related model. For this, create the library_app/models/
res_partner.py file with the following code:

from odoo import fields, models

class Partner(models.Model):

 _inherit = "res.partner"

 published_book_ids = fields.One2many(

 "library.book",

 "publisher_id",

 string="Published Books")

Since this is a new code file for the module, it must also be added to the library_app/
models/__init__.py file:

from . import library_book

from . import res_partner

The One2many fields expect three positional arguments:

• The related model, which corresponds to the comodel_name keyword argument

• The related model field that's used to refer to this record, which corresponds to the
inverse_name keyword argument

• The field label, which corresponds to the string keyword argument

The additional keyword arguments that are available are the same as those for the many-
to-one fields: context, domain, auto_join, and ondelete (here, these act on the
many sides of the relationship).

192 Models – Structuring the Application Data

Many-to-many relationships
A many-to-many relationship is used when both entities have a to-many relationship
between them. Using the library books example, there is a many-to-many relationship
between books and authors: each book can have many authors, and each author can have
many books.

On the book's side – that is, the library.book model – we have the following:

class Book(models.Model)

 _name = "library.book"

 author_ids = fields.Many2many(

 "res.partner",

 string="Authors")

On the author's side, we can have the res.partner model inverse relationship:

class Partner(models.Model):

 _inherit = "res.partner"

 book_ids = fields.Many2many(

 "library.book",

 string="Authored Books")

The Many2many minimal signature expects one positional argument for the related
model – the comodel_name keyword argument – and it is recommended to also provide
the string argument with the field label.

At the database level, many-to-many relationships don't add any columns to the
existing tables. Instead, a special relationship table is automatically created to store the
relationships between records. This special table has only two ID fields, with foreign keys
for each of the two related tables.

By default, the relationship table's name is the two table names joined with an underscore
and _rel appended at the end. In the case of our books or authors relationship, it should
be named library_book_res_partner_rel.

On some occasions, we may need to override these automatic defaults. One such case is
when the related models have long names, and the name for the automatically generated
relationship table is too long, exceeding the 63-character PostgreSQL limit. In these cases,
we need to manually choose a name for the relationship table to conform to the table
name size limit.

Relationships between models 193

Another case is when we need a second many-to-many relationship between the same
models. In these cases, a relationship table name must be manually provided so that it
doesn't collide with the table name already being used for the first relationship.

There are two alternatives to manually override these values: either use positional
arguments or keyword arguments.

When using positional arguments for the field definition, the field definition looks
like this:

Book <-> Authors relation (using positional args)

author_ids = fields.Many2many(

 "res.partner",

 "library_book_res_partner_rel",

 "a_id",

 "b_id",

 "Authors")

Keyword arguments can be used instead, which may be preferred for readability:

Book <-> Authors relation (using keyword args)

author_ids = fields.Many2many(

 comodel_name="res.partner",

 relation="library_book_res_partner_rel",

 column1="a_id",

 column2="b_id",

 string="Authors")

The following arguments were used here:

• comodel_name is the name of the related model.

• relation is the database table name supporting the relationship data.

• column1 is the column name referring to the model records.

• column2 is the column name referring to the related model records.

• string is the field label in the user interface.

194 Models – Structuring the Application Data

Similar to one-to-many relational fields, many-to-many fields can also use the context,
domain, and auto_join keyword arguments.

Tip
On abstract models, don't use the many-to-many field column1 and
column2 attributes. There is a limitation in the ORM design regarding
abstract models, and when you force the names of the relationship columns,
they cannot be cleanly inherited anymore.

Parent-child relationships are a particular case that is worth looking into in more detail.
We will do this in the next section.

Hierarchical relationships
Parent-child tree relationships are represented using a many-to-one relationship with the
same model, where each record holds a reference to its parent. The inverse one-to-many
relationship represents the record's direct children.

Odoo provides improved support for these hierarchical data structures, making the
child_of and parent_of operators available in domain expressions. These operators
are available so long as the model has a parent_id field (or the model has a _parent_
name valid definition, setting an alternative field name to use for this purpose).

Optimized hierarchy tree searching can be enabled by setting the _parent_
store=True model attribute and adding the parent_path helper field. This helper
field stores additional information about the hierarchy tree structure, which is used to run
faster queries.

Changes in Odoo 12
The parent_path hierarchy helper field was introduced in Odoo 12.
Previous versions used the parent_left and parent_right integer
fields for the same purpose, but these were deprecated as of Odoo 12.

As an example of a hierarchical structure, we will add a category tree to the Library app to
be used to categorize books.

Relationships between models 195

Let's add the library_app/models/library_book_category.py file, along with
the following code:

from odoo import api, fields, models

class BookCategory(models.Model):

 _name = "library.book.category"

 _description = "Book Category"

 _parent_store = True

 name = fields.Char(translate=True, required=True)

 # Hierarchy fields

 parent_id = fields.Many2one(

 "library.book.category",

 "Parent Category",

 ondelete="restrict")

 parent_path = fields.Char(index=True)

 # Optional, but nice to have:

 child_ids = fields.One2many(

 "library.book.category",

 "parent_id",

 "Subcategories")

Here, we have a basic model with a parent_id field to reference the parent record.

To enable a faster tree search, we added the _parent_store=True model attribute.
When doing so, the parent_path field must also be added, and it must be indexed.
The field that's used to refer to the parent is expected to be named parent_id, but any
other field name can be used, so long as we declare that in the _parent_name optional
model attribute.

It is often convenient to add a field to list the direct children. This is the one-to-many
inverse relationship shown in the previous code.

196 Models – Structuring the Application Data

For the previous code to be used by our module, remember to add a reference to its file in
library_app/models/__init__.py:

from . import library_book_category

from . import library_book

from . import res_partner

Be aware that these additional operations come with storage and execution time penalties,
so they are best used when you expect to read more frequently than write, such as in the
case of category trees. This is only necessary when optimizing deep hierarchies with many
nodes; this can be misused for small or shallow hierarchies.

Flexible relationships using Reference fields
Regular relational fields can only reference one fixed co-model. The Reference field
type does not have this limitation and supports flexible relationships, and the same field
can reference records from different destination models.

As an example, we will add a Reference field to the book category model, to indicate a
highlighted book or author. This field can link to either a book or a partner record:

 highlighted_id = fields.Reference(

 [("library.book", "Book"), ("res.partner",

 "Author")],

 "Category Highlight",

)

The field definition is similar to a Selection field, but here, the selection list holds the
models that can be used on the field. In the user interface, the user will pick a model from
the available list, and then pick a specific record from that model.

Reference fields are stored in the database as a character field, containing a
<model>,<id> string.

Changes in Odoo 12
Previous Odoo versions featured a referenceable model configuration that
could be used to pick the models used in Reference fields from the
Settings | Technical | Database Structure menu. These configurations could
be used in the Reference field, by adding the odoo.addons.res.
res_request.referenceable_models function in place of the
model selection list. This feature was removed in Odoo 12.

Computed fields 197

With that, we've seen the field types that are supported by Odoo. Not only can fields store
user-provided data, but they are also capable of presenting computed values. The next
section introduces this feature.

Computed fields
Fields can have their values automatically calculated by a function, instead of simply
reading a database stored value. A computed field is declared just like a regular field
but has the additional compute argument to define the function that's used for the
computation.

Computed fields involve writing some business logic. So, to take full advantage of this
feature, we should be comfortable with the topics that will be explained in Chapter 8,
Business Logic – Supporting Business Processes. Computed fields will still be explained here,
but we will keep the business logic as simple as possible.

As an example, we will add a computed field to the Books model, displaying the
publisher's country. This will allow the country to be displayed in the form view.

The code that's needed to find the value is simple: if book represents a book record, we
can use object dot notation to get the publisher's country using book.publisher_
id.country_id.

Edit the book model in the library_app/models/library_book.py file by
adding the following code:

 publisher_country_id = fields.Many2one(

 "res.country", string="Publisher Country",

 compute="_compute_publisher_country",

)

 @api.depends("publisher_id.country_id")

 def _compute_publisher_country(self):

 for book in self:

 book.publisher_country_id =

 book.publisher_id.country_id

First, this code adds the publisher_country_id field and sets the compute
attribute with the name of the method function to use for its computation, _compute_
publisher_country.

198 Models – Structuring the Application Data

The function name was passed to the field as a string argument, but it may also be passed
as a callable reference (the function identifier, without the surrounding quotes). In this
case, we need to make sure the function is defined in the Python file before the field is.

The coding convention for computation method names is to append the _compute_
prefix to the computed field name.

The _compute_publisher_country method receives a self record set to operate
on and is expected to set the computed field values for all of those records. The code
should iterate on the self recordset, to act on each record.

The computed value is set using the usual assignment (write) operation. In our case,
the computation is quite simple: we assign it to the current book's publisher_
id.country_id value.

Tip
The same computation method can be used to compute two or more fields. In
this case, the method should be used on the compute attribute of the computed
fields, and the computation method should assign values to all of them.

The computation function must always assign a value to the field, or fields, to compute.
If your computation method has if conditions, make sure that all the run paths assign
values to the computed fields. Computation methods will error if it misses assigning a
value to some computed field(s).

Changes in Odoo 13
Odoo 13 introduced computed writeable fields, intended to replace the
onchange mechanism in the future. Computed writeable fields have a
computation logic, triggered by changes on the dependencies, and also allow
for the value to be directly set by users. This mechanism will be discussed
alongside onchange in Chapter 8, Business Logic – Supporting Business
Processes.

The @api.depends decorator is needed to specify the fields the computation depends on.
It is used by the ORM to know when the computation needs to be triggered to update stored
or cached values. One or more field names are accepted as arguments and dot-notation can
be used to follow field relationships. In this example, the publisher_country_id field
should be recomputed when publisher_id.country_id changes.

Computed fields 199

Warning
Forgetting to add the @api.depends decorator to a computation
method, or adding it but failing to add all the dependency fields used for the
computation, will prevent the computed field from being recalculated when it
is supposed to. This can lead to hard-to-identify bugs.

We can see the result of our work by adding the publisher_country_id field to the
book form view, in the library_app/views/library_book.xml file. Make sure that
the selected publishers have the country set on them when trying this with a web client.

Searching and writing on computed fields
The computed field we created can be read, but it cannot be searched or written to. By
default, computed field values are computed immediately when read, and their values are
not stored in the database. That's why they can't be searched like regular stored fields can.

One way to work around this limitation is to have the computed values stored in the
database by adding the store = True attribute. They will be recomputed when any of
their dependencies change. Since the values are now stored, they can be searched just like
regular fields, and a search function is not needed.

Computed fields also support search and write operations without being stored in the
database. This can be enabled by implementing specialized functions for these operations,
alongside the compute function:

• A search function to implement the search logic

• An inverse function to implement the write logic

Using these, our computed field declaration will look as follows:

 publisher_country_id = fields.Many2one(

 "res.country",

 string="Publisher Country",

 compute="_compute_publisher_country",

 inverse="_inverse_publisher_country",

 search="_search_publisher_country",

)

200 Models – Structuring the Application Data

To write on a computed field, we must implement the inverse logic of the value
computation. This is why the function in charge of handling the write operation is called
inverse.

In this example, setting a value on publisher_country_id is expected to change the
publisher's country.

Note that this will also change the value that's seen in all the books with this publisher.
Regular access controls apply to these write operations, so this action will only be
successful if the current user also has to write access to the partner model.

This inverse function implementation uses the values set on the computed field to perform
the actual write operations needed to make this change persistent:

 def _inverse_publisher_country(self):

 for book in self:

 book.publisher_id.country_id =

 book.publisher_country_id

The original value computation copies the book.publisher_id.country_id value
to the book.publisher_country_id field. The inverse implementation, shown
previously, does the opposite. It reads the value set on book.publisher_country_id
and writes it to the book.publisher_id.country_id field.

To enable search operations on a computed field, its search function must be
implemented. The search function intercepts domain expressions operating on the
computed field, and then replaces them with an alternative domain expression, using only
regular stored fields.

In the publisher_country_id example, the actual search should be done on the
country_id field of the linked publisher_id partner record. Here is the function
implementation for this translation:

 def _search_publisher_country(self, operator, value):

 return [

 ("publisher_id.country_id", operator, value)

]

"

When we perform a search on a model, a domain expression tuple is used as an argument,
giving the details of the operator and the value that was used in the domain expression.

Computed fields 201

The search function is triggered whenever this computed field is found in conditions
of a domain expression. It receives operator and value for the search and is
expected to translate the original search element into an alternative domain search
expression. The country_id field is stored in the related partner model, so our search
implementation just alters the original search expression to use the publisher_
id.country_id field instead.

For reference, domain expressions will be explained in more detail in Chapter 8, Business
Logic – Supporting Business Processes.

Related fields
The computed field we implemented in the previous section simply copies a value from a
related record to a field of the model. This is a common use case and is needed when we
want to present a field in a form from a related record. The Odoo framework provides a
shortcut for this: the related field feature.

Related fields make fields that belong to a related model available in a model and are
accessible using a dot notation chain. This makes them available in cases where dot
notation can't be used, such as UI form views.

To create a related field, a field of the required type must be declared, and the related
attribute must be used, with the dot notation field chain needed to reach the target-
related field.

A related field can be used to get the same effect as in the previous publisher_
country_id computed field example.

Here is the alternative implementation, now using a related field:

 publisher_country_id = fields.Many2one(

 "res.country",

 string="Publisher Country",

 related="publisher_id.country_id",

)

Behind the scenes, related fields are just computed fields, and they also conveniently
implement search and inverse methods. So, they can be searched and written on.

202 Models – Structuring the Application Data

By default, related fields are read-only, so the inverse write operation won't be available. To
enable it, set the readonly=False field attribute.

Changes in Odoo 12
In previous Odoo versions, related fields were writable by default, but it was
proven to be a dangerous default since it could allow changes to setup or
master data in cases where that was not expected to be allowed. Because of
this, starting with Odoo 12, the related fields are now read-only by default:
readonly=True.

It's also worth noting that related fields can also be stored in a database using
store=True, just like any other computed field.

With that, we've learned about the features supported by Odoo fields, including computed
fields. Another important element regarding data structures is constraints that enforce
data quality and integrity. This is what the next section will discuss.

Model constraints
Often, applications need to ensure data integrity and enforce validations to ensure that the
data is complete and correct.

The PostgreSQL database manager supports many useful validations, such as avoiding
duplicates or checking that values meet certain simple conditions. Odoo models can use
the PostgreSQL constraints capabilities for this.

Some checks require more sophisticated logic and are better implemented as Python
code. For these cases, we can use specific model methods that implement that Python
constraint logic.

Let's learn more about these two possibilities.

SQL model constraints
SQL constraints are added to the database table definition and are enforced directly by
PostgreSQL. They are declared using the _sql_constraints class attribute.

It is a list of tuples, and each tuple has a format of (name, sql, message):

• name is the constraint identifier name.

• sql is the PostgreSQL syntax for the constraint.

Model constraints 203

• message is the error message to present to users when the constraint is not
verified.

The most used SQL constraints are UNIQUE constraints, which are used to prevent data
duplication, and CHECK constraints, which are used to test a SQL expression on the data.

As an example, we will add two constraints to the Book model:

• Ensure that there are repeated books with the same title and publication date.

• Ensure that the publication date is not in the future.

Edit the library_app/models/library_book.py file by adding the following
code, which implements these two constraints. Usually, this goes after a section of the
code with the field declarations:

 _sql_constraints = [

 ("library_book_name_date_uq",

 "UNIQUE (name, date_published)",

 "Title and publication date must be unique."),

 ("library_book_check_date",

 "CHECK (date_published <= current_date)",

 "Publication date must not be in the future."),

]

For more information on the PostgreSQL constraint syntax, see the official documentation
at https://www.postgresql.org/docs/current/ddl-constraints.html.

Python model constraints
Python constraints can use arbitrary code to perform validations. The validation function
should be decorated with @api.constrains and the list of fields involved in the check.
The validation is triggered when any of those fields are modified and should raise an
exception if the condition fails – usually, ValidationError.

In the case of the Library app, an obvious example is to prevent inserting incorrect ISBNs.
We already have the logic to check that an ISBN is correct in the _check_isbn()
method. We can use this in a model constraint to prevent saving incorrect data.

https://www.postgresql.org/docs/current/ddl-constraints.html

204 Models – Structuring the Application Data

Edit the library_app/models/library_book.py file by going to the top of the file
and adding the following import statement:

from odoo.exceptions import ValidationError

Now, in the same file, add the following code to the Book class:

 @api.constrains("isbn")

 def _constrain_isbn_valid(self):

 for book in self:

 if book.isbn and not book._check_isbn():

 raise ValidationError(

 "%s is an invalid ISBN" % book.isbn)

Python SQL constraints are usually added before the code section containing the field
declaration.

Overview of the Odoo base models
In the previous chapters, we had the chance to create new models, such as the Book
model, but we also made use of the already existing models, such as the Partner model,
provided by the Odoo base module. In this section, we will provide a short introduction
to these built-in models.

The Odoo core framework includes the base add-on module. It provides the essential
features needed for Odoo apps to work. It can be found in the Odoo repository, in the./
odoo/addons/base subdirectory.

The standard add-on modules, which provide the official apps and features made available
with Odoo, depend on and build on top of the base module. The standard add-ons can
be found in the Odoo repository, in the ./addons subdirectory.

The base module provides two kinds of models:

• Information repository, ir.*, models

• Resources, res.*, models

The information repository models are used to store basic data needed for the Odoo
framework, such as Menus, Views, Models, and Actions. The data we find in the Technical
menu is usually stored in information repository models.

Summary 205

Some relevant examples are as follows:

• ir.actions.act_window for Windows Actions

• ir.config_parameter for global configuration options

• ir.ui.menu for Menu Items

• ir.ui.view for Views

• ir.model for Models

• ir.model.fields for model Fields

• ir.model.data for XML IDs

The resources models store basic master data that can be used by any module.

These are the most important resource models:

• res.partner for business partners, such as customers and suppliers, and
addresses

• res.company for company data

• res.country for countries

• res.country.state for states or regions inside countries

• res.currency for currencies

• res.groups for application security groups

• res.users for application users

This should provide useful context to help you understand the origin of these models.

Summary
In this chapter, we learned about the different model types, such as transient and abstract
models, and why these are useful for user interface wizards and mixins, respectively.
Other relevant model features include Python and SQL constraints, which can be used to
prevent data entry errors.

We also learned about the available field types, as well as all the attributes they support,
to be able to represent the business data in the most accurate way possible. We also
learned about relationships fields, and how to use them to create relationships between the
different entities that are used by our applications.

206 Models – Structuring the Application Data

After that, we saw that models are usually based on the models.Model class, but that we
can also use models.Abstract for reusable mixin models and models.Transient
for wizards or advanced user interaction dialogs. We saw the general model attributes that
are available, such as _order for default sort order and _rec_name for the default field
to use for record representation.

The fields in a model define all the data they will store. We have also seen the
non-relational field types that are available and the attributes they support. We also
learned about the several types of relational fields – many-to-one, one-to-many,
and many-to-many – and how they define relationships between models, including
hierarchical parent/child relationships.

Most fields store user input in databases, but fields can have values automatically
computed by Python code. We saw how to implement computed fields and some
advanced possibilities we have, such as making them writable and searchable.

Also part of model definitions is constraints, enforcing data consistency, and validation.
These can be implemented either using PostgreSQL or Python code.

Now that we have created the data model, we should populate it with some default and
demonstration data. In the next chapter, we will learn how to use data files to export,
import, and load data using our system.

Further reading
The official documentation for models can be found at https://www.odoo.com/
documentation/15.0/developer/reference/backend/orm.html.

https://www.odoo.com/documentation/15.0/developer/reference/backend/orm.html
https://www.odoo.com/documentation/15.0/developer/reference/backend/orm.html

In the third part, we explain how to write the business logic layer around the models,
corresponding to the controller component of the architecture. This includes the built-in
Object-Relational Mapping (ORM) functions, used to manipulate the data in the models,
and social features used for messages and notifications.

In this section, the following chapters are included:

• Chapter 7, Recordsets – Working with Model Data

• Chapter 8, Business Logic – Supporting Business Processes

• Chapter 9, External APIs – Integrating with Other Systems

Section 3:
Business Logic

7
Recordsets – Working

with Model Data
In the previous chapters, we gave an overview of model creation and loading data into
models. Now that we have a data model and some data to work with, it's time to learn
more about how to programmatically interact with it.

A business application needs business logic to compute data, perform validations, or
automate operations. The Odoo framework API provides the tools for a developer to
implement this business logic. Most of the time, this means querying, transforming, and
writing data.

Odoo implements an Object-Relational Mapping (ORM) layer on top of the lower level
database. The ORM objects provide the Application Programming Interface (API) to
be used to interact with the data. This API provides an execution environment and the
creation of recordsets, that are objects used to work the data stored in the database.

This chapter explains how to use the execution environment and recordsets so that you
have all the tools needed to implement the business processes.

210 Recordsets – Working with Model Data

In this chapter, we'll cover the following topics:

• Using the shell command to interactively explore the ORM API

• Understanding the execution environment and context

• Querying data using recordsets and domains

• Accessing data in recordsets

• Writing to records

• Working with date and time

• Working with recordsets

• Transactions and low-level SQL

By the end of this chapter, you should be able to use Odoo code to perform all of these
actions, and you will also be ready to use these tools to implement your own business
processes.

Technical requirements
The code examples in this chapter will be executed in an interactive shell and do not require
any code from the previous chapters. A copy of the code can be found in the GitHub
repository for this book (https://github.com/PacktPublishing/Odoo-15-
Development-Essentials) in the ch07/ch07_recorsets_code.py file.

Using the shell command
Python includes a command-line interface that is a great way to explore the language.
Odoo includes a similar feature through the shell command option. These commands
can be executed interactively to better understand how they work.

To use it, add the shell command when starting Odoo, plus any Odoo options that we
would usually use when starting Odoo:

(env15) $ odoo shell -c library.conf

This will initiate the usual server startup sequence in the terminal, but instead of launching
an HTTP server listening for requests, it will start a Python prompt waiting for input.

https://github.com/PacktPublishing/Odoo-15-Development-Essentials
https://github.com/PacktPublishing/Odoo-15-Development-Essentials

Using the shell command 211

This interactive command interface simulates the environment found inside a class
method, running under the OdooBot superuser. The self variable is available and is set
to the OdooBot superuser record object.

For example, these commands inspect the self recordset:

>>> self

res.users(1,)

>>> self._name

'res.users'

>>> self.name

'OdooBot'

>>> self.login

'__system__'

The previous commands print out the following:

• The self variable contains a res.users recordset containing a record with ID 1.

• The recordset model name, inspecting self._name, is res.users, as expected.

• The value for the record name field is OdooBot.

• The value for the record login field is __system__.

Changes in Odoo 12
The ID 1 superuser changed from admin to the internal __system__
user. The admin user is now the ID 2 user, and not a superuser, although
the Odoo standard apps are careful to automatically grant it full access to them.
The main reason for this change was to avoid having users perform day-to-
day activities with the superuser account. Doing so is dangerous because this
change bypasses all access rules and may cause inconsistent data, such as cross-
company relationships. It's now meant to be used only for troubleshooting or
very specific cross-company operations.

As with Python, to exit the prompt, press Ctrl + D. This will also close the server process
and return to the system shell prompt.

We now know how to start an Odoo shell session. This is important for us to discover the
Odoo API features. So, let's use it to explore the execution environment.

212 Recordsets – Working with Model Data

The execution environment
Odoo recordsets operate in an environment context, providing relevant information
about the context where the operation was triggered. For example, the database cursor
being used, the current Odoo user, and more.

Python code running inside a model method has access to the self recordset variable,
and the local environment can be accessed with self.env. The server shell environment
also provides a self reference in a similar way to what is found inside a method.

In this section, we will learn about the attributes made available by the execution
environment and how to use them.

Environment attributes
As we have seen, self is a recordset. Recordsets carry environment information with
them such as the user browsing the data and additional context-related information
(for example, the active language and time zone).

The current environment can be accessed using the env attribute of a recordset, as shown
in this example:

>>> self.env

<odoo.api.Environment object at 0x7f6882f7df40>

The execution environment in self.env has the following attributes available:

• The env.cr attribute is the database cursor being used.

• The env.user attribute is the record for the current user.

• The env.uid attribute is the ID for the session user. It is the same as env.user.id.

• The env.context attribute is an immutable dictionary containing the session
context data.

• The env.company attribute is the active company.

• The env.companies attributes are the user's allowed companies.

Changes in Odoo 13
The env.company and env.companies attributes were introduced in
Odoo 13. In previous versions, this information was read from the user record
by using env.user.company_id and env.user.company_ids.

The execution environment 213

The environment also provides access to the registry where all installed models are
available. For example, self.env["res.partner"] returns a reference to the
partner model. We can then use search() or browse() on it to create recordsets:

>>> self.env["res.partner"].search([("display_name", "like",
"Azure")])

res.partner(14, 26, 33, 27)

In this example, the returned recordset for the res.partner model contains three
records, with IDs 14, 26, 33, and 27. The recordset is not ordered by ID, as the default
order for the corresponding model was used. In the case of the partner model, the default
object _order is display_name.

The environment context
The context object is a dictionary carrying session data that can be used on both the
client-side user interface and the server-side ORM and business logic.

From the client side, it can carry information from one view to the next—such as the
ID of the record active on the previous view after following a link or a button—or it can
provide default values to be used in the next view.

On the server side, some recordset field values can depend on the locale settings provided
by the context. In particular, the lang key affects the value of the translatable fields.

Context can also provide signals for server-side code. For example, the active_test
key, when set to False, changes the behavior of the ORM search() method so that it
does not apply the automatic filter on inactive records, ignoring the active record field.

An initial context from the web client looks like this:

>>> self.env.context

{'lang': 'en_US', 'tz': 'Europe/Brussels'}

Here, you can see the lang key with the user language and tz with the time zone
information. The content in records might be different depending on the current context:

• Translated fields can have different values depending on the active lang language.

• Datetime fields, when returned to clients, can show different times depending on
the active tz timezone.

214 Recordsets – Working with Model Data

When opening a view from a link or a button in a previous view, the web client will
automatically add a few keys to the context, providing information on the record we are
navigating from:

• active_model is the previous model name.

• active_id is the ID of the original record the user was positioned at.

• active_ids is a list of the IDs selected in cases where the user is navigating
from a list view.

Wizard assistants frequently use these keys to find the records they are expected to act on.

The context can be used to set default values and activate default filters on the target web
client view by using keys with these specific prefixes:

• The default_ prefix added to a field name sets a default value for that field. For
example, {'default_user_id': uid} sets the current user as a default value.

• The default_search_ prefix added to a filter name will automatically enable
that filter. For example, {'default_search_filter_my_tasks': 1}
activates the filter with name filter_my_books.

These prefixes are frequently used in window actions and in views in <field
context="{...}"> elements.

Modifying the recordset execution environment and
context
The recordset execution context can be modified to take advantage of the behaviors
described in the previous section or to add information to be used in methods called on
that recordset.

The environment and its context can be modified through the following methods. Each
of these returns a new recordset, along with a copy of the original with a modified
environment:

• The <recordset>.with_context(<dictionary>) method replaces the
context with the one provided in the dictionary.

• The <recordset>.with_context(key=value, ...) method modifies the
context by setting the provided attributes on it.

Querying data with recordsets and domains 215

• The <recordset>.sudo([flag=True]) method enables or disables the
superuser mode, allowing it to bypass security rules. The context user is kept the same.

• The <recordset>.with_user(<user>) method modifies the user to the one
provided, which is either a user record or an ID number.

• The <recordset>.with_company(<company>) method modifies the
company to the one provided, which is either a company record or an ID number.

• The <recordset>.with_env(<env>) method modifies the full environment
of the recordset to the one provided.

Changes in Odoo 13
The with_user() and with_company() methods were introduced in
Odoo 13. To switch users, previous versions used the sudo([<user>])
method, which could be provided to a specific user to switch to the
superuser context. To switch companies, previous versions used with_
context(force=company=<id>), setting a context key that was
checked in the relevant business logic.

Additionally, the environment object provides the env.ref() function, taking a string
with an external identifier and returning the corresponding record, as shown in the
following example:

>>> self.env.ref('base.user_root')

res.users(1,)

If the external identifier does not exist, a ValueError exception is raised.

We learned more about the execution environments when running Python code in the
Odoo server. The next step is to interact with data. In this case, the first thing to learn is
how to query data and create recordsets, which is discussed in the next section.

Querying data with recordsets and domains
Odoo business logic will need to read data from the database to perform actions based
on it. This is done through recordsets, which query the raw data and expose it as Python
objects we can manipulate.

Odoo Python will usually be running in a class method, where self represents the
recordset to work with. In some cases, we need to create recordsets for other models. For
that, we should get a reference to the models and then query it to create the recordset.

216 Recordsets – Working with Model Data

The environment object, usually accessible as self.env, holds references to all the
models available, and these can be accessed using dictionary-like syntax. For example,
to get a reference to the partner model, use self.env['res.partner'] or
self.env.get('res.partner'). This model reference can then be used to create
recordsets, as we will see next.

Creating recordsets
The search() method takes a domain expression and returns a recordset with the
records matching those conditions. For example, [('name', 'like', 'Azure')]
will return all records with a name field containing Azure.

If the model has the active special field then by default, only the records with
active=True will be considered.

The following keyword arguments can also be used:

• The order keyword is a string to be used as the ORDER BY clause in the database
query. This is usually a comma-separated list of field names. Each field name may be
followed by the DESC keyword to indicate a descending order.

• The limit keyword sets a maximum number of records to retrieve.

• The offset keyword ignores the first n results; it can be used with limit to query
blocks of records at a time.

Sometimes, we just need to know the number of records meeting certain conditions.
For that, we can use search_count(), which returns the record count instead of a
recordset in a more efficient way.

The browse() method takes a list of IDs or a single ID and returns a recordset with
those records. This can be convenient in cases where we already know the IDs of the
records we want.

For example, to get all the partner records containing Lumber in the display name, use
the following search() call:

>>> self.env['res.partner'].search([('display_name', 'like',
'Lumber')])

res.partner(15, 34)

In the case the IDs to query are known, use a browse() call, as in the following example:

>>> self.env['res.partner'].browse([15, 34])

res.partner(15, 34)

Querying data with recordsets and domains 217

Most of the time the IDs are not known, so the search() method is used more often
than browse().

To make good use of search(), a good understanding of the domain filter syntax is
needed. So, we will focus on this in the next section.

Domain expressions
A domain is used to filter data records. It uses a specific syntax that the Odoo ORM
parses to produce the SQL WHERE expressions that are used to query the database.
A domain expression is a list of conditions, and each condition is a ('<field>',
'<operator>', <value>) tuple. For example, the following is a valid domain
expression, with a single condition: [('is_done', '=', False)]. A domain
expression with no conditions is also allowed. This translates to an empty list ([]) and the
result is a query returning all records.

There are actually two possible evaluation contexts for domains: on the client side, such as
in window actions and web client views, and on the server side, such as in security record
rules and model method Python code. What can be used in the <field> and <value>
elements may depend on the evaluation context.

Next, we will look at a detailed explanation for each element of a domain condition: field,
operator, and value.

The field element of a domain condition
The first condition element is a string with the name of the field being filtered. When
the domain expression is used on the server side, the field element can use dot-notation
to access the values of related models. For example, we could use something like
'publisher_id.name', or even 'publisher_id.country_id.name'.

On the client side, dot-notation is not allowed, and only simple field names can be used.

Tip
In cases where a related record value is needed for a client-side domain
expression because dot-notation can't be used, the solution is to add to the
model a related field by using a related= attribute. This way, the value is
accessible as a directly accessible model field.

218 Recordsets – Working with Model Data

The operator element of a domain condition
The second condition element is the operator to apply on the field being filtered. What
follows is a list of the allowed operators:

Querying data with recordsets and domains 219

These operators are applied to the field provided in the first element, using the value
provided in the third element. For example, ('shipping_address_id', 'child_
of', partner_id) checks the evaluation context for a partner_id variable and reads
its value. The database is queried on the shipping_address_id field, selecting the
records where that address is a child of the one identified in the partner_id value.

The value element of a domain condition
The third element is evaluated as a Python expression. It can use literal values, such as
numbers, Booleans, strings, or lists, and can use fields and identifiers available in the
evaluation context.

Record objects are not accepted values. Instead, the corresponding ID values should be
used. For example, don't use [('user_id', '=', user)] – instead, use [('user_
id', '=', user.id)].

For record rules, the evaluation context has the following names available:

• user: A record for the current user (equivalent to self.env.user). Use user.
id to get the corresponding ID.

• company_id: The ID of a record for the active company (equivalent to self.
env.company.id).

• company_ids: A list of IDs for the allowed companies (equivalent to self.env.
companies.ids).

• time: The Python time module, exposing date and time functions. The official
reference can be found at https://docs.python.org/3/library/time.
html.

Changes in Odoo 13
The company_id and company_ids context values are available for
record rule evaluation since Odoo 13, and the approach from the previous
version, using user.company_id.id, should not be used anymore.
For example, the previously frequently used ['|', ('company_id',
'=', False), ('company_id', 'child_of', [user.
company_id.id])] domain should now be written as [('company_
id', 'in', company_ids)].

https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/time.html

220 Recordsets – Working with Model Data

Searching on to-many fields
When the searched field is a to-many, the operator is applied to each of the field values,
and the evaluated record is included in the result if any of the field values match the
domain condition.

The = and in operators behave like a contains operation. They both check if any of the
field values match any of the list of values searched for. Symmetrically, the != and not in
operators check that none of the field values match any of the list of values searched for.

Composing a domain expression with multiple conditions
A domain expression is a list of items and can contain several condition tuples. By default,
these conditions will implicitly be combined using the AND logical operator. This means
that it will only return records meeting all of the conditions.

Explicit logic operators can also be used – for example, the ampersand symbol (&) for
AND operations (the default) and the pipe symbol (|) for OR operations. These will
operate on the next two items, working in a recursive way. We'll look at this in more detail
in a moment.

For a slightly more formal definition, a domain expression uses prefix notation, also
known as Polish notation (PN), where operators precede operands. The AND and OR
operators are binary operators, while NOT is a unary operator.

The exclamation point (!) represents the NOT operator and it operates on the following
item. So, it should be placed before the item to be negated. For example, the ['!',
('is_done','=',True)] expression will filter all not done records.

Operator items, such as (!) or (|), can be nested, allowing the definition of AND/OR/NOT
complex conditions. Let's illustrate this with an example.

In server-side record rules, we can find domain expressions similar to this one:

['|',

 ('message_follower_ids', 'in', [user.partner_id.id]),

 '|',

 ('user_id', '=', user.id),

 ('user_id', '=', False)

]

Querying data with recordsets and domains 221

This domain filters all of the records where:

- the current user is a follower, or

- the current user is the record's responsible (user_id), or

- the record has no responsible user set.

The following diagram illustrates the abstract syntax tree representation of the previous
domain expression example:

Figure 7.1 – A diagram illustrating a composed domain expression

The first | (OR) operator acts on the follower's condition plus the result of the next
condition. The next condition is again the union of two other conditions - records where
either the user ID is set to the current user, or the user ID is not set.

Special domain conditions
Some special domain conditions are also supported for the cases where an always true or
always false expression is needed.

The (1, "=", 1) condition represents an always true expression. It can be used on
record rules to give a higher user group access to all records, previously limited by a
lower user group. For example, it is used on the User: All Documents group, to
override the record access limitation in the inherited User: Own Documents only
group. For an example of this, see addons/sales_team/security/sales_team_
security.xml in the Odoo source code.

222 Recordsets – Working with Model Data

The (0, "=", 1) condition is also supported and represents an always false expression.

Grouping by fields and aggregate data
Sometimes, we need to group records by their data field. Odoo can do this using the
read_group() method. The method arguments are as follows:

• The domain argument is a list with a domain expression to filter the records to
retrieve.

• The fields argument is a list of field names, along with an aggregation function
to apply in the format of field:aggr. Aggregation functions are the ones allowed
by PostgreSQL, such as sum, avg, min, max, count, and count_distinct. For
example: ["subtotal:sum"].

• The groupby argument is a list with the data field names to group by.

• The limit argument is an optional maximum number of groups to return.

• The offset argument is an optional number of records to skip.

• The orderby argument is an optional string with an order by clause to apply to the
result (similar to what search() supports).

• The lazy argument, if set to True, only groups by the first field, and adds the
remaining group of fields to the __context result. This argument defaults to
True, so set it to False to have all group by fields immediately applied.

Here is an example grouping partner record by country, and count the number of
different states found:

>>> self.env["res.partner"].read_group([("display_name",
"like", "Azure")], fields=["state_id:count_distinct",],
groupby=["country_id"], lazy=False)

[{'__count': 4, 'state_id': 1, 'country_id': (233, <odoo.
tools.func.lazy object at 0x7f197b65fc00>), '__domain': ['&',
('country_id', '=', 233), ('display_name', 'like', 'Azure')]}]

This returned a list with a single group result for the 233 country ID. Running self.
env["res.country"].browse(233).name, we can see that the country is United
Sates. The __count key shows that there are 4 partners in the 233 country ID, and the
state_id object shows the count distinct aggregation results: 1 distinct state is used by
these partners.

We now know how to create recordsets. Next, we will want to read the data in them.
In many cases, this is a trivial operation, but for some field types, there are a few details
involved that are worth noting. The next section will help us with that.

Accessing data in recordsets 223

Accessing data in recordsets
Once we have a recordset, we want to inspect the data contained in it. So, in the following
sections, we will explore how to access data in recordsets.

We can get field values for individual records called singletons. Relational fields have
special properties, and we can use dot-notation to navigate through linked records.
Finally, we will discuss some considerations for when we need to handle date and time
records and convert them between different formats.

Accessing individual record data
When a recordset has only one record it is called a singleton. Singletons are still
recordsets and can be used wherever a recordset is expected.

But unlike multi-element recordsets, singletons can access their fields using dot-notation,
as follows:

>>> print(self.name)

OdooBot

In the next example, we can see that the same self singleton recordset also behaves as a
recordset, and we can iterate it. It has only one record, so only one name is printed out:

>>> for rec in self: print(rec.name)

...

OdooBot

Trying to access field values in recordsets with more than one record will result in an
error, so this can be an issue in cases where we are not sure if we are working with a
singleton recordset.

Tip
Although using dot-notation to access fields won't work on multiple records, it
is possible to access them in bulk by mapping the values to a recordset. This is
done using mapped(). For example, rset.mapped("name") returns a
list with the name values.

224 Recordsets – Working with Model Data

For methods designed to work only with a singleton, we can check this using self.
ensure_one() at the beginning. It will raise an error if self is not a singleton.

Tip
The ensure_one() function also raises an error if the record is empty.
To check if a rset has one or zero records, you can use rset or rset.
ensure_one().

An empty record is also a singleton. This is convenient because accessing field values will
return a None value instead of raising an error. This is also true for relational fields, and
accessing related records using dot notation won't raise errors.

So, in practice, there is no need to check for an empty recordset before accessing their field
values. For example, instead of if record: print(record.name), we can safely
write the simpler print(record.name) method. A default value for an empty value
can also be provided by using an or condition: print(record.name or "None").

Accessing relational fields
As we saw earlier, models can have relational fields—many-to-one, one-to-many, and
many-to-many. These field types have recordsets as values.

In the case of many-to-one fields, the value can be a singleton or an empty recordset.
In both cases, we can directly access their field values. As an example, the following
instructions are correct and safe:

>>> self.company_id

res.company(1,)

>>> self.company_id.name

'YourCompany'

>>> self.company_id.currency_id

res.currency(1,)

>>> self.company_id.currency_id.name

'EUR'

Accessing data in recordsets 225

An empty recordset conveniently also behaves like a singleton, and accessing its fields
does not return an error but just returns False. Because of this, we can traverse records
using dot-notation without worrying about errors from empty values, as shown here:

>>> self.company_id.parent_id

res.company()

>>> self.company_id.parent_id.name

False

Accessing date and time values
In recordsets, date and datetime values are represented as native Python objects.
For example, when we look up the last login date for the admin user:

>>> self.browse(2).login_date

datetime.datetime(2021, 11, 2, 16, 47, 57, 327756)

Since the date and datetime values are Python objects, they have all of the
manipulation features available for these objects.

Changes in Odoo 12
The date and datetime field values are now represented as Python objects,
unlike previous Odoo versions, where the date and datetime values were
represented as text strings. These field type values can still be set using text
representations in the same way as previous Odoo versions.

Dates and times are stored in the database in a native Coordinated Universal Time
(UTC) format, which is not time zone-aware. The datetime values seen on recordsets
are also in UTC. When presented to the user by the web client, the datetime values are
converted into the user's time zone by using the current session's time zone setting that
is stored in the context tz key, for example, {'tz': 'Europe/Brussels'}. This
conversion is a web client responsibility, as it isn't done by the server.

For example, an 11:00 AM datetime value entered by a Brussels (UTC+1) user is stored in
the database as 10:00 AM UTC, and will be seen by a New York (UTC-4) user as 06:00 AM.
The Odoo server log message timestamps use the UTC time and not the local server time.

226 Recordsets – Working with Model Data

The opposite conversion—from the session time zone to UTC—also needs to be done by
the web client when sending the user's datetime input back to the server.

Tip
Remember that the date and time data stored in the database and handled by
the server code is always represented in UTC. Even the server log message
timestamps are represented in UTC.

We have now reviewed the details of how to access record data. However, our application
will provide some automation for business processes, so inevitably we will also need to
write to recordsets. Let's look at this in detail in the next section.

Writing to records
We have two different ways to write to records: using the object-style direct assignment
or using the write() method. The write() method is the low-level method in charge
of performing write operations, and it is still used directly when using the external API or
when loading XML records. The object-style direct assignment was added later into the
ORM model. It implements the active record pattern and can be used in Python code logic.

Changes in Odoo 13
In Odoo 13, the ORM model introduced a new database writing approach
called in-memory ORM. In previous Odoo versions, every write would
immediately generate the corresponding database SQL command, and this
came with a performance penalty, especially when complex interdependencies
caused repeated updates on the same records. Since Odoo 13, these operations
are instead saved in a memory cache, and at the end of the transaction, the
new flush() method is automatically called to perform the corresponding
database operations in a single go.

Next, we will look at both of these methods and their differences.

Using object-style value assignments
Recordsets implement the active record pattern. This means that we can assign values to
them and these changes will be made persistent in the database. This is an intuitive and
convenient way to manipulate data.

Writing to records 227

Changes in Odoo 13
Assigning values to a recordset with more than one record is supported as of
Odoo 13. Up to Odoo 12, only writing values to single records was supported,
and the write() method had to be used to write to multiple records.

Here is an example:

>>> root = self.env["res.users"].browse(1)

>>> print(root.name)

System

>>> root.name = "Superuser"

>>> print(root.name)

Superuser

When using the active record pattern, the value of relational fields can be set by assigning a
recordset.

Date and time fields can be assigned values as either Python native objects or string
representations in the Odoo default format:

>>> from datetime import date

>>> self.date = date(2020, 12, 1)

>>> self.date

datetime.date(2020, 12, 1)

>>> self.date = "2020-12-02"

>>> self.date

datetime.date(2020, 12, 2)

Binary fields should be assigned base64 encoded values. For example, when having raw
binary data read from a file, that value must be converted using base64.b64encode()
before being assigned to a field:

>>> import base64

>>> blackdot_binary = b"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\
x00\x00\x00\x01\x00\x00\x00\x01\x08\x04\x00\x00\x00\xb5\x1c\
x0c\x02\x00\x00\x00\x0bIDATx\xdacd\xf8\x0f\x00\x01\x05\x01\
x01'\x18\xe3f\x00\x00\x00\x00IEND\xaeB'\x82"

>>> self.image_1920 = base64.b64encode(blackdot_binary).
decode("utf-8")

228 Recordsets – Working with Model Data

When assigning values on many-to-one fields, the value assigned must be a single record
(that is, a singleton recordset).

For to-many fields, the value can also be assigned with a recordset, replacing the list of
linked records (if any) with a new one. Here, a recordset of any size is allowed.

To set an empty value on a relational field, set it with None or False:

>>> self.child_ids = None

>>> self.child_ids

res.partner()

To append or remove a record on the assigned list, use the record manipulation
operations.

For example, imagine a company record also has a related partner record that is used to
hold address details. Suppose that we want to add the current user as a company child
contact. This can be done with the following:

>>> mycompany_partner = self.company_id.partner_id

>>> myaddress = self.partner_id

>>> mycompany_partner.child_ids = mycompany_partner.child_ids |
myaddress

Here, the pipe operator (|) was used to join a record to obtain a larger recordset.

The compact append and assign operator (|=) could have been used for the same effect:

>>> mycompany_partner.child_ids |= myaddress

More details on record manipulation operations are given later in this chapter in the
Composing recordsets section.

Using the write() method
The write() method can also be used to update data in records. It accepts a dictionary
with the field names and values to assign. It can be more convenient to use in some cases,
for example, where the dictionary is prepared first, and the assignment is performed
later. It is also useful in older versions of Odoo (up to Odoo 12) for cases where direct
assignment can't be used.

Writing to records 229

The write() method receives a dictionary with the fields and values to assign and
updates the recordset with them:

>>> Partner = self.env['res.partner']

>>> recs = Partner.search([("name", "ilike", "Azure")])

>>> recs.write({"comment": "Hello!"})

True

Date and time fields can be assigned with values of the corresponding Python objects or
by using string text representations, just like with object-style assignments.

Since Odoo 13, write() can use recordsets to set values on to-one and to-many
relational fields, just like with object-style assignments.

Changes in Odoo 13
The write() method can use recordsets to assign values on relational fields.
Up to Odoo 12, many-to-one fields were set using an ID value, and to-many
fields were set using a special syntax, for example, (4, <id>, _) to add
a record and (6, 0, [<ids>]) to set the full record list. This syntax is
discussed in more detail in Chapter 5, Importing, Exporting, and Module Data.

For example, suppose we have two Partner records, address1 and address2, and we
want to set them on the self.child_ids field.

Using the write() method, we would use the following:

self.write({ 'child_ids': address1 | address2})

Another option (needed for versions before Odoo 13) is as follows:

self.write({ 'child_ids': [(6, 0, [address1.id, address2.
id])]})

The write() method is used to write dates on existing records. But we also need to
create and delete records, which we will discuss in the next section.

230 Recordsets – Working with Model Data

Creating and deleting records
The create() and unlink() model methods allow us to create and delete existing
records, respectively.

The create() method takes a dictionary with the fields and values for the record to be
created, using the same syntax as write(). Default values are automatically applied as
expected, as shown in this example:

>>> Partner = self.env['res.partner']

>>> new = Partner.create({'name': 'ACME', 'is_company': True})

>>> print(new)

res.partner(59,)

The unlink() method deletes the records in the recordset, as done in the next example:

>>> rec = Partner.search([('name', '=', 'ACME')])

>>> rec.unlink()

2021-11-15 18:40:10,090 3756 INFO library odoo.models.unlink:
User #1 deleted mail.message records with IDs: [20]

2021-11-15 18:40:10,146 3756 INFO library odoo.models.unlink:
User #1 deleted res.partner records with IDs: [59]

2021-11-15 18:40:10,160 3756 INFO library odoo.models.unlink:
User #1 deleted mail.followers records with IDs: [9]

True

The unlink() method returns a True value. Also, during the delete operation, it
triggers log messages informing the cascade deletion of related records, such as Chatter
messages and followers.

Another way to create a record is to duplicate an existing one. The copy() model method
is available for this. It accepts an optional argument with a dictionary, which contains
values to override when creating the new record.

For example, to create a new user from the demo user, we could use the following:

>>> demo = self.env.ref("base.user_demo")

>>> new = demo.copy({"name": "John", "login": "john@example.
com"})

The fields with the copy=False attribute won't be automatically copied. To-many
relational fields have this flag disabled by default, so they won't be copied.

Working with date and time fields 231

In the previous sections, we have learned how to access data in recordsets and create and
write to recordsets. However, there are some field types that deserve more attention. In the
next section, we will discuss specific techniques for working with date and time fields.

Working with date and time fields
In the Accessing data in recordsets section, we saw how to read date and time values from
records. It is common to also need to perform date calculations and to convert dates
between their native format and string representations. Here, we will see how to perform
these kinds of operations.

Odoo provides a few useful functions to create new date and time objects.

The odoo.fields.Date object provides these helper functions:

• The fields.Date.today() function returns a string with the current date in
the format expected by the server, using UTC as a reference. This is adequate to
compute default values. It can be used directly in a date field definition by using
default=fields.Date.today.

• The fields.Date.context_today(record, timestamp=None) function
returns a string with the current date in the session's context. The time zone
value is taken from the record's context. The optional timestamp parameter is a
datetime object and will be used instead of the current time if provided.

The odoo.fields.Datetime objects provide these datetime creation functions:

• The fields.Datetime.now() function returns a string with the current
datetime in the format expected by the server, using UTC as a reference. This
is adequate to compute default values. It can be used directly in a datetime field
definition by using default=fields.Datetime.now.

• The fields.Datetime.context_timestamp(record, timestamp)
function converts a naive datetime value (without time zone) into a time zone-
aware datetime value. The time zone is extracted from the record's context, hence
the name of the function.

232 Recordsets – Working with Model Data

Adding and subtracting time
Date objects can be compared and subtracted to find the time elapsed between both
dates. This time elapsed is a timedelta object. A timedelta object can be added to or
subtracted from date and datetime objects, performing date arithmetic.

These objects are provided by the Python standard library datetime module. Here is a
sample of the essential operations we can do with them:

>>> from datetime import date

>>> date.today()

datetime.date(2021, 11, 3)

>>> from datetime import timedelta

>>> date(2021, 11, 3) + timedelta(days=7)

datetime.date(2021, 11, 10)

A full reference for the date, datetime, and timedelta data types can be found at
https://docs.python.org/3/library/datetime.html.

The timedelta object supports weeks, days, hours, seconds, and more. But it doesn't
support years or months.

To perform date arithmetic using months or years, we should use the relativedelta
object. Here is an example of adding one year and one month:

>>> from dateutil.relativedelta import relativedelta

>>> date(2021, 11, 3) + relativedelta(years=1, months=1)

datetime.date(2022, 12, 3)

The relativedelta object supports advanced date arithmetic, including
leap years and Easter calculations. The documentation for it can be found at
https://dateutil.readthedocs.io.

Odoo also provides a few additional functions in the odoo.tools.date_utils module:

• The start_of(value, granularity) function returns the start of a time
period with the specified granularity, which is a string value with one of year,
quarter, month, week, day, or hour.

• The end_of(value, granularity) function returns the end of a time period
with the specified granularity.

https://docs.python.org/3/library/datetime.html
https://dateutil.readthedocs.io

Working with date and time fields 233

• The add(value, **kwargs) function adds a time interval to the given value.
The **kwargs arguments are to be used by a relativedelta object to define
the time interval. These arguments can be years, months, weeks, days, hours,
minutes, and so on.

• The subtract(value, **kwargs) function subtracts a time interval from the
given value.

These utility functions are also exposed in the odoo.fields.Date and the odoo.
fields.Datetime objects.

Here are a few examples using the previous functions:

>>> from odoo.tools import date_utils

>>> from datetime import datetime

>>> now = datetime(2020, 11, 3, 0, 0, 0)

>>> date_utils.start_of(now, 'week')

datetime.datetime(2020, 11, 2, 0, 0)

>>> date_utils.end_of(now, 'week')

datetime.datetime(2020, 11, 8, 23, 59, 59, 999999)

>>> today = date(2020, 11, 3)

>>> date_utils.add(today, months=2)

datetime.date(2021, 1, 3)

>>> date_utils.subtract(today, months=2)

datetime.date(2020, 9, 3)

Converting date and time objects to text
representations
There will be cases where we need to convert a Python date object into a text
representation. This may be needed, for example, to prepare a user message or to format
data to send to another system.

The Odoo field objects provide helper functions to convert the native Python objects to
string representations:

• The fields.Date.to_string(value) function converts a date object into a
string in the format expected by the Odoo server.

• The fields.Datetime.to_string(value) function converts a datetime
object into a string in the format expected by the Odoo server.

234 Recordsets – Working with Model Data

These use the Odoo server predefined defaults, which are defined in the following
constants:

• odoo.tools.DEFAULT_SERVER_DATE_FORMAT

• odoo.tools.DEFAULT_SERVER_DATETIME_FORMAT

These map to %Y-%m-%d and %Y-%m-%d %H:%M:%S, respectively.

The date.strftime and datetime.strftime functions accept a format string
parameter that can be used for other conversions to text.

For example, consider the following:

>>> from datetime import date

>>> date(2020, 11, 3).strftime("%d/%m/%Y")

'03/11/2020'

Further details on the available format codes can be found at https://docs.python.
org/3/library/datetime.html#strftime-and-strptime-behavior.

Converting text-represented dates and times
There are cases where dates arrive formatted as text strings and need to be converted to
Python date or datetime objects. This was frequently needed up to Odoo 11, where
stored dates were read as text representations. Some tools are provided to help with this
conversion from text into native data types and then back into text.

To facilitate this conversion between formats, the fields.Date and fields.
Datetime objects provide these functions:

• The fields.Date.to_date function converts a string into a date object.

• The fields.Datetime.to_datetime(value) function converts a string into
a datetime object.

An example of a usage of to_datetime is as follows:

>>> from odoo import fields

>>> fields.Datetime.to_datetime("2020-11-21 23:11:55")

datetime.datetime(2020, 11, 21, 23, 11, 55)

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior

Working with date and time fields 235

The preceding example uses the Odoo internal date format to parse the provided string
and convert it into a Python datetime object.

For other date and time formats, the strptime method from the date and datetime
object can be used:

>>> from datetime import datetime

>>> datetime.strptime("03/11/2020", "%d/%m/%Y")

datetime.datetime(2020, 11, 3, 0, 0)

In most cases, the text-represented time will not be in UTC, as expected by the Odoo
server. The time must be converted to UTC before it can be stored in the Odoo database.

For example, if the user is in the Europe/Brussels timezone (at +1:00 hours from UTC)
the 2020-12-01 00:30:00 user time should be stored in UTC as 2020-11-30
23:30:00. Here is the code recipe for this:

>>> from datetime import datetime

>>> import pytz

>>> naive_date = datetime(2020, 12, 1, 0, 30, 0)

>>> client_tz = self.env.context["tz"]

>>> client_date = pytz.timezone(client_tz).localize(naive_date)

>>> utc_date = client_date.astimezone(pytz.utc)

>>> print(utc_date)

2020-11-30 23:30:00+00:00

This code gets the user time zone name from the context and then uses it to convert the
naive date to a time zone-aware date. The final step is to convert the client time zone date
to a UTC date by using astimezone(pytz.utc).

We've now learned specific techniques to work with date and time in Odoo. There are also
specific techniques to work with recordsets and the values stored in relational fields, which
we'll discuss in the next section.

236 Recordsets – Working with Model Data

Working with recordsets
A recordset is a collection of records, and Python business logic frequently needs to use
them. There are several operations that can be performed on recordsets, such as mapping
and filtering. We can also compose new recordsets by adding or removing records. Other
common operations are inspecting the contents of a recordset to check if a particular
record is there or not, for example.

Changes in Odoo 10
Since Odoo 10, recordset manipulation has preserved the record order.
This is unlike previous Odoo versions, where recordset manipulation was
not guaranteed to preserve the record order, although addition and slicing
maintained the record order.

Recordset operations
Recordsets have a few functions available to perform useful actions on them, such as
sorting or filtering records.

These are the supported functions and attributes:

• The recordset.ids attribute returns a list with the IDs of the recordset
elements.

• The recordset.ensure_one() function checks whether it's a single record
(that is, a singleton); if it's not, a ValueError exception is raised.

• The recordset.filtered(<function or str>) function returns a filtered
recordset, and this function is a test function to filter records. The argument can
instead be a string containing a dot-separated sequence of fields to evaluate. The
records evaluating to a truthy value are selected.

• The recordset.mapped(<function or str>) function returns a list of
values, and the function returns a value for each record. The argument can instead
be a string containing a dot-separated sequence of fields to evaluate to reach the
field to return. To-many relations are safe to use in the field sequence.

• The recordset.sorted(<function ot str>) function returns the
recordset with a specific element order. The function returns a value for each record,
which are used to sort the recordset. The argument can instead be a string with
the name of the field to sort by. Note that a dot-notation sequence of fields is not
allowed. An optional reverse=True argument is also available.

Working with recordsets 237

Here are some usage examples for these functions:

>>> rs0 = self.env["res.partner"].search([("display_name",
"like", "Azure")])

>>> len(rs0) # how many records?

4

>>> rs0.filtered(lambda r: r.name.startswith("Nicole"))

res.partner(27,)

>>> rs0.filtered("is_company")

res.partner(14,)

>>> rs0.mapped("name")

['Azure Interior', 'Brandon Freeman', 'Colleen Diaz', 'Nicole
Ford']

>>> rs0.sorted("name", reverse=True).mapped("name")

['Nicole Ford', 'Colleen Diaz', 'Brandon Freeman', 'Azure
Interior']

>>> rs0.mapped(lambda r: (r.id, r.name))

[(14, 'Azure Interior'), (26, 'Brandon Freeman'), (33, 'Colleen
Diaz'), (27, 'Nicole Ford')]

The composition of a recordset
Recordsets are immutable, meaning that their values can't be directly modified. Instead,
we can compose a new recordset based on existing ones. Slice notation, which is
commonly used with Python lists, can be used on recordsets to extract a subset of the
records. Here are a few examples:

• rs[0] and rs[-1] retrieve the first element and the last element, respectively.

• rs[1:] results in a copy of the recordset without the first element.

• rs[:1] returns the first element of the recordset.

Tip
For a fail-safe way to retrieve the first element of a recordset, use rs[:1]
instead of rs[0]. The latter results in an error if rs is empty, whereas the
former will just return an empty recordset in this case. Another option is to
use the first() function from the odoo.fields module: fields.
first(rs).

238 Recordsets – Working with Model Data

Recordsets also support the following set operations:

• The rs1 | rs2 operation is a union set operation and results in a recordset with
all elements from both recordsets. This is a set-like operation and won't result in
duplicate elements.

• For example, self.env.user | self.env.user returns a single record, such
as res.users(1,).

• The rs1 & rs2 operation is an intersection set operation and results in a
recordset with only the elements present in both recordsets.

• The rs1 - rs2 operation is a difference set operation and results in a recordset
with the rs1 elements not present in rs2.

Tip
Recordsets also support the addition operation (+), however, it should be
avoided. It has a different behavior from the union operation (|) and allows
for duplicate elements in a recordset. However, this is rarely what we want. For
example, self.env.user + self.env.user returns two records,
such as res.users(1, 1).

We can use these operations directly with a value assignment for shorter notation:

• The self.author_ids |= author1 operation adds the author1 record if it
is not in the recordset.

• The self.author_ids &= author1 operation keeps only the records also
present in the author1 recordset.

• The self.author_ids -= author1 operation removes the specific author1
record if it is present in the recordset.

Recordset accumulation
In some cases, we want to loop through some logic and accumulate records resulting from
each iteration of the loop. The ORM way to accumulate a recordset is to start with an
empty recordset and then add records to it. To get an empty recordset, create a reference
to the model. For example, consider the following:

Partner = self.env["res.partner"]

recs = self.env["res.partner"]

for i in range(3):

 rec = Partner.create({"name": "Partner %s" % i})

 recs |= rec

Working with recordsets 239

The previous code loops three times and on each loop it creates a new partner record before
accumulating it to the recs recordset. As it is a recordset, the recs variable can be used in
cases where recordsets are expected, such as assigning a value to a to-many field.

However, accumulating recordsets is not time-efficient and should be avoided inside
loops. The reason for this is that Odoo recordsets are immutable objects and any operation
on a recordset implies copying it to get the modified version. When appending a record
to a recordset, the original recordset is not modified. Instead, a copy of it is made with the
record appended to it. This copy operation consumes time, and the larger the recordset is,
the longer it takes.

As a result, alternatives should be considered. For the preceding example, we could have
accumulated all of the record data dictionaries in a Python list and then made a single
create() call to create all of the records. This is possible because the create()
method can accept a list of dictionaries.

So, the loop could look like this:

values = []

for i in range(3):

 value = {"name": "Partner %s" % i}

 values.append(value)

recs = self.env["res.partner"].create(values)

However, this solution won't work in all cases. Another option is to use a Python list
to accumulate records. Python lists are mutable objects, and appending elements is an
efficient operation for them. As Python lists are not actually recordsets, this option can't
be used where a recordset is expected, for example, an assignment to a to-many field.

The following is an example of accumulating records to a Python list:

Partner = self.env["res.partner"]

recs = []

for i in range(3):

 rec = Partner.create({"name": "Partner %s" % i})

 recs.append(new_rec)

The previous examples illustrate a few techniques that can be used in loops to build
recordsets from individual elements. However, there are many cases where the loop is not
strictly needed and operations such as mapped() and filtered() can provide more
efficient ways to achieve the desired aim.

240 Recordsets – Working with Model Data

Recordset comparisons
There are cases where we need to compare the content of a recordset to decide what
further action is needed. Recordsets support the expected comparison operations.

To check if a <rec> record is an element of a <my_recordset> recordset, the following
code can be used:

• <rec> in <my_recordset>

• <rec> not in <my_recordset>

Recordsets can also be compared to check if one is contained in another. To compare two
recordsets, use set1 and set2:

• Using set1 <= set2 and set1 < set2 returns True if all of the elements in
set1 are also in set2. The < operators return False if both recordsets have the
same elements.

• Using set1 >= set2 and set1 > set2 returns True if all of the elements in
set2 are also in set1. The > operators return False if both recordsets have the
same elements.

Transactions and low-level SQL
ORM methods that are called from a client run in a transaction. Transactions ensure
correctness in the case of concurrent writes or failures. During a transaction, the data
records used are locked, protecting them from other concurrent transactions and ensuring
that they are not unexpectedly changed. In case of failure, all the transaction changes are
rolled back, returning to the initial state.

Transaction support is provided by the PostgreSQL database. When an ORM method is
called from a client, a new transaction is initiated. If an error occurs during the method
execution, any changes that have been made are reverted. If the method execution
completes with no errors, then the changes made are committed, making them effective
and visible to all other transactions.

This is automatically handled for us, and we usually don't need to worry about it. However,
in some advanced use cases, it might be useful to have control over the current transaction.

Transactions and low-level SQL 241

Changes in Odoo 13
Since Odoo 13, database write operations are not done while the method
is running. Instead, they accumulate in a memory cache, and the actual
database writing is delayed to the end of the execution of the method, which is
performed by a flush() call that is invoked automatically at that point.

Controlling database transactions
There are cases where controlling the transaction can be useful and the self.env.cr
database cursor can be used for this. An example of this is looping through records to
perform an operation on each of them, where we want to skip the ones with operation
errors without affecting the other ones.

For this, the object provides the following:

• self.env.cr.commit() commits the transaction's buffered write operations,
making them effective in the database.

• self.env.cr.rollback() cancels the transaction's write operations since
the last commit or all of them if no commit was made.

Tip
An Odoo shell session mimics a method execution context. This means that
the database writes are not performed until self.env.cr.commit() is
called.

Executing raw SQL
SQL can be run directly in the database by using the cursor execute() method. This
takes a string with the SQL statement to run and a second optional argument with the
values to use as parameters for the SQL.

The values parameter can be a tuple or a dict. When using a tuple, the parameters are
replaced with %s, and when using a dict, they are replaced with %(<name>)s. Here are
examples of both approaches:

>>> self.env.cr.execute("SELECT id, login FROM res_users WHERE
login=%s OR id=%s", ("demo", 1))

>>> self.env.cr.execute("SELECT id, login FROM res_users WHERE
login=%(login)s OR id=%(id)s", {"login": "demo", "id": 1})

242 Recordsets – Working with Model Data

Any of the previous instructions run the SQL, replacing the parameters and preparing
a cursor with the results that needs to be fetched. More details on this can be found in
the psycopg2 documentation at https://www.psycopg.org/docs/usage.
html#query-parameters.

Caution!
With cr.execute(), we should not directly compose the SQL query
concatenating parameters. Doing so is known to be a security risk that can be
exploited through SQL injection attacks. Always use the %s placeholders with
the second parameter to pass values.

To fetch the results, the fetchall() function can be used, returning the rows' tuples:

>>> self.env.cr.fetchall()

[(6, 'demo'), (1, '__system__')]

The dictfetchall() function can also be used to retrieve records as dicts:

>>> self.env.cr.dictfetchall()

[{'id': 6, 'login': 'demo'}, {'id': 1, 'login': '__system__'}]

Tip
The self.env.cr database cursor object is an Odoo-specific wrapper
around the PostgreSQL library, psycopg2. This means that the psycopg2
documentation is helpful to understand how to fully use the object:

https://www.psycopg.org/docs/cursor.html

It is also possible to run data manipulation language (DML) instructions, such as
UPDATE and INSERT. The Odoo environment relies on a data cache, and it may become
inconsistent with the database when these DML instructions are executed. For this reason,
after running using raw DML, the environment cached should be invalidated by using
self.env.cache.invalidate(fnames=None, ids=None).

fnames is a list with the names of the fields to invalidate and refresh. If this is not
provided, all fields will be invalidated.

https://www.psycopg.org/docs/usage.html#query-parameters
https://www.psycopg.org/docs/usage.html#query-parameters
https://www.psycopg.org/docs/cursor.html

Summary 243

ids is a list with the record IDs to invalidate and refresh. If this is not provided, all will be
invalidated.

Caution!
Executing SQL directly in the database bypasses the ORM validations and
dependencies and can lead to inconsistent data. You should use it only if you're
sure of what you are doing.

Summary
In this chapter, we learned how to work with model data to perform CRUD operations—
that is, creating, reading, updating, and deleting data—and all the techniques needed
to make use of and manipulate recordsets. This provides the foundation needed for us to
implement our business logic and automation code.

To experiment with the ORM API, we used the Odoo interactive shell. We ran our
commands in an environment accessible through self.env. The environment is similar
to the one provided in the model method, and so it is a useful playground for exploring
the Odoo API.

The environment allows us to query data from any Odoo model that is made available as a
recordset. We learned about the different ways to create recordsets and then how to read the
data provided, including special data types such as dates, binary values, and relational fields.

Another fundamental capability in Odoo is to write back data. In this chapter, we also
learned how to create new records, write to existing records, and delete records.

We also looked at working with date and time values by using the Python built-in tools
and a few additional helper functions included in the Odoo framework.

Recordsets can be manipulated to add elements, filter out records, reorder, or accumulate
values, as well as to compare them or check for the inclusion of particular records. Any
of these operations may be needed when implementing business logic, and this chapter
presented the essential techniques for all of these.

Finally, in some cases, we may need to skip using the ORM model and use low-level SQL
operations to directly access the database or have finer control over transactions. These allow
us to address the occasional cases where the ORM model is not the best tool for the job.

244 Recordsets – Working with Model Data

With all these tools under our belt, we are ready for the next chapter, where we will add
the business logic layer for our models and implement model methods that use the ORM
API to automate actions.

Further reading
The official Odoo documentation for recordsets can be found at https://www.odoo.
com/documentation/15.0/developer/reference/backend/orm.html.

https://www.odoo.com/documentation/15.0/developer/reference/backend/orm.html
https://www.odoo.com/documentation/15.0/developer/reference/backend/orm.html

8
Business Logic –

Supporting Business
Processes

In the previous chapters, we learned how to use models to build the application data
structures, and then how to explore and interact with that data using the ORM API
and recordsets.

In this chapter, we will put all this together to implement business logic patterns that
are common in applications. We will learn about the several ways business logic can be
triggered, as well as some common patterns that are used to support them. We will also
learn about important development techniques, such as logging, debugging, and testing.

246 Business Logic – Supporting Business Processes

We'll cover the following topics in this chapter:

• Learning project – the book checkout module

• Ways to trigger business logic

• Understanding ORM method decorators for recordsets

• Exploring useful data model patterns

• Using the ORM built-in methods

• Adding onchange user interface logic

• The message and activity features

• Creating a wizard

• Raising exceptions

• Writing unit tests

• Using log messages

• Learning about the available developer tools

By the end of this chapter, you should be confident in designing and implementing
business logic automation and know how to test and debug your code.

Technical requirements
In this chapter, we will create a new library_checkout add-on module. It depends
on the library_app and library_member add-on modules, which we created in the
previous chapters.

The code for these add-on modules can be found in this book's GitHub repository,
at https://github.com/PacktPublishing/Odoo-15-Development-
Essentials-Fifth-Edition, in the ch08 directory.

Both of these add-on modules need to be available in the Odoo add-ons path so that they
can be installed and used.

https://github.com/PacktPublishing/Odoo-15-Development-Essentials-Fifth-Edition
https://github.com/PacktPublishing/Odoo-15-Development-Essentials-Fifth-Edition

Learning project – the book checkout module 247

Learning project – the book checkout module
The master data structures for the library application are in place. Now, we want to add
transactions to our system. We would like library members to be able to borrow books.
This means we should keep track of book availability and returns.

Each book checkout has a life cycle, from the moment they are created to the moment
when the books are returned. It is a simple workflow that can be represented as a Kanban
board, where the several stages are presented as columns, and the work items from the
left-hand column are sent to the right until they are completed.

This chapter focuses on the data model and business logic that are needed to support
this feature.

The basic user interface will be discussed in Chapter 10, Backend Views – Designing the
User Interface, while the Kanban views will be discussed in Chapter 11, Kanban Views and
Client-Side QWeb. Let's quickly have a rundown of the data model.

Preparing the data model
The first thing we must do is plan the data model that's needed for the book checkout
feature.

The book checkout model should have the following fields:

• Library member borrowing books (required)

• Checkout date (defaults to today)

• Responsible person for the checkout (defaults to the current user)

• Checkout lines, with the books requested (one or more)

To support the book checkout life cycle, we will also have the following:

• Stage of the request—draft, open, borrowed, returned, or canceled

• Due date, when the books are due to be returned

• Returned date, when the books were returned

We will start by creating the new library_checkout module and implementing
an initial version of the library checkout model. This will not introduce anything new
compared to the previous chapters but will provide the foundation to build the features
that are relevant for this chapter.

248 Business Logic – Supporting Business Processes

Creating the module
The library_checkout module needs to be created, similar to what we did in the
previous chapters. Follow these steps to do this:

1. Create a new library_checkout directory in the same directory as the other
add-on modules of the library project. This is where the following files should
be added.

2. Add the __manifest__.py file and ensure it has the following content:

{ "name": "Library Book Checkout",

 "description": "Members can borrow books from the

 library.",

 "author": "Daniel Reis",

 "depends": ["library_member"],

 "data": [

 "security/ir.model.access.csv",

 "views/library_menu.xml",

 "views/checkout_view.xml",

],

}

3. Add the main __init__.py file with the following line of code:

from . import models

4. Add the models/__init__.py file with the following line of code:

from . import library_checkout

5. Add the model definition file, models/library_checkout.py, as follows:

from odoo import fields, models

class Checkout(models.Model):

 _name = "library.checkout"

 _description = "Checkout Request"

 member_id = fields.Many2one(

 "library.member",

Learning project – the book checkout module 249

 required=True,

)

 user_id = fields.Many2one(

 "res.users",

 "Librarian",

 default=lambda s: s.env.user,

)

 request_date = fields.Date(

 default=lambda s: fields.Date.today(),

)

Next, we should add the data files, including the access rule, the menu items, and some
basic views so that the module can be used.

1. Add the access security configuration to the security/ir.model.access.
csv file:

id,name,model_id:id,group_id:id,perm_read,perm_
write,perm_create,perm_unlink

checkout_user,Checkout User,model_library_
checkout,library_app.library_group_user,1,1,1,1

2. Next, the views/library_menu.xml file needs to be added for implementing
the menu items:

<odoo>

 <record id="action_library_checkout"

 model="ir.actions.act_window">

 <field name="name">Checkouts</field>

 <field name="res_model">library.checkout</field>

 <field name="view_mode">tree,form</field>

 </record>

 <menuitem id="menu_library_checkout"

 name="Checkout"

 action="action_library_checkout"

 parent="library_app.menu_library"

 />

</odoo>

250 Business Logic – Supporting Business Processes

3. The views are implemented in the views/checkout_view.xml file:

<odoo>

 <record id="view_tree_checkout" model="ir.ui.view">

 <field name="name">Checkout Tree</field>

 <field name="model">library.checkout</field>

 <field name="arch" type="xml">

 <tree>

 <field name="request_date" />

 <field name="member_id" />

 </tree>

 </field>

 </record>

 <record id="view_form_checkout" model="ir.ui.view">

 <field name="name">Checkout Form</field>

 <field name="model">library.checkout</field>

 <field name="arch" type="xml">

 <form>

 <sheet>

 <group>

 <field name="member_id" />

 <field name="request_date" />

 <field name="user_id" />

 </group>

 </sheet>

 </form>

 </field>

 </record>

</odoo>

Exploring ways to trigger business logic 251

Now that the module contains the preceding files, it can be installed in our development
database:

Figure 8.1 – The initial Library Checkout feature

Now, we can start adding more interesting features.

Throughout this project, we will be adding pieces of business logic to different places
to showcase the several possibilities that Odoo provides. The next section will discuss
these options.

Exploring ways to trigger business logic
Once the data model is in place, business logic is needed to perform some automatic
actions on it. Business logic can either be directly initiated by the user, with an action such
as a button click, or it can be triggered automatically when an event occurs, such as a write
on a record.

Much of this business logic will involve reading and writing on recordsets. The details and
techniques for this were discussed in Chapter 7, Recordsets – Working with Model Data,
where we provided the tools for the actual business logic implementation.

The next question is how the business logic should be triggered. This will depend on when
and why the business logic should be triggered. Here is a summary of the several options.

Some business logic is tightly connected to the model field definitions. Some of the
instances of model definition-related business logic are as follows:

• Data validation rules, to enforce conditions that the data should meet. These are
methods that are decorated with @api.constrains.

• Automatic computations, which are implemented as fields – virtual or stored – that
have their values computed by a method. These are methods that are decorated with
@api.depends and assigned to the compute field attribute.

• Default values, which can be dynamically computed, are methods that are
decorated with @api.model and assigned to the default field attribute.

252 Business Logic – Supporting Business Processes

This model definition logic was discussed in detail in Chapter 6, Models – Structuring
the Application Data. Some examples can be found in the Data model patterns section.
The ORM method decorators for recordsets section provides a recap of the several ORM
decorators mentioned here.

We also have model event-related business logic, which is related to business workflows.
It can be attached to the following record-related events:

• Create, write, and unlink business logic can be added to these events, for the cases
where the other, more elegant approaches are not possible.

• Onchange logic can be applied to user interface views so that we have some field
values that are changed as a consequence of changes being made to other fields.

For actions that are directly initiated by the user, the following options are available:

• A button view element for calling an object method. The button can be on a form
or tree of the Kanban view.

• A server action, which is available from a menu item or in the Action
context menu.

• A window action for opening a wizard form, where input can be collected from the
user and a button will call the business logic. This allows for richer user interaction.

These techniques will be presented throughout this chapter. The supporting methods will
often use API decorators, so it is important to understand the different available ones. For
clarity, the next section provides an overview of them.

Understanding ORM method decorators for
recordsets
The method definition can be preceded by an @, which applies a decorator to it. These
decorators add specific behaviors for these methods and depending on the purpose of a
method, different decorators can be used.

Understanding ORM method decorators for recordsets 253

Decorators for computed fields and validation
methods
A few decorators are useful for validation logic and computed fields. They are listed here:

• @api.depends(fld1,...) is used for computed field functions to identify
what changes the (re)calculation should be triggered on. It must set values on the
computed fields; otherwise, an error will be shown.

• @api.constrains(fld1,...) is used for model validation functions and
performs checks for when any of the mentioned fields are changed. It should not
write changes in the data. If the checks fail, an exception should be raised.

These were discussed in detail in Chapter 6, Models – Structuring the Application Data.

Another group of decorators affect the self recordset behavior and are relevant when
you're implementing other kinds of business logic.

Decorators that affect the self recordset
By default, methods are expected to act on a recordset that's provided by the self first
argument. The method code will usually include a for statement that loops through each
of the records in the self recordset.

Changes in Odoo 14
The @api.multi decorator was removed from Odoo 14. In previous Odoo
versions, it was used to explicitly signal that the decorated method expects
a recordset in the self parameter. This is already the default behavior for
methods, so its use is only for clarity. The @api.one decorator has been
deprecated since Odoo 9 and was also removed in Odoo 14. It handled the record
loop for you so that the method code would be called once for each record, and
the self argument would always be a singleton. Since Odoo 14, both decorators
must be removed from the code since they are not supported anymore.

In some cases, the method is expected to work at the class level and not on particular
records, behaving like a static method. These methods are decorated with @api.model
and, in this case, the self method parameter should be used as a reference to the model;
it is not expected to contain records.

254 Business Logic – Supporting Business Processes

For example, the create() method uses @api.model – it does not expect records
as input, only a values dictionary, which will be used to create and return a record. The
methods that are used to calculate default values should also use the @api.model
decorator.

Before we can go deeper into the business logic's implementation, we must add more
depth to the data model and, in the process, provide examples of a couple of common data
model patterns.

Exploring useful data model patterns
There are a few data structures that are often needed for models that represent business
documents. These can be seen in several Odoo apps, such as Sales Orders or Invoices.

A common pattern is the header/lines data structure. It will be used for a checkout request
so that you can have several books. Another pattern is to use states or stages. These two have
differences, and we will discuss them and provide a reference implementation shortly.

Finally, the ORM API provides a few methods that are relevant for the user interface.
These will also be discussed in this section.

Using header and lines models
A common need for form views is to have header-line data structures. For example, a sales
order includes several lines for the ordered items. In the case of the checkout feature, a
checkout request can have several request lines, one for each of the borrowed items.

With Odoo, it is simple to implement this. Two models are needed for a header-line form
view – one for the document header and another for the document lines. The line model
has a many-to-one field to identify the header it belongs to, while the header model has a
one-to-many field listing the lines in that document.

The library_checkout module was already added to the checkout model, so now, we
want to add the lines. Follow these steps to do so:

1. Edit the models/library_checkout.py file to add the one-to-many field for
the checkout lines:

 line_ids = fields.One2many(

 "library.checkout.line",

 "checkout_id",

 string="Borrowed Books",

)

Exploring useful data model patterns 255

2. Add the file for the new model to models/__init__.py, as follows:

from . import library_checkout

from . import library_checkout_line

3. Next, add the Python file for declaring the checkout lines model, models/
library_checkout_line.py, with the following content:

from odoo import api, exceptions, fields, models

class CheckoutLine(models.Model):

 _name = "library.checkout.line"

 _description = "Checkout Request Line"

 checkout_id = fields.Many2one(

 "library.checkout",

 required=True,

)

 book_id = fields.Many2one("library.book",

 required=True)

 note = fields.Char("Notes")

4. We must also add access security configuration. Edit the security/ir.model.
access.csv file and add the following highlighted line:

id,name,model_id:id,group_id:id,perm_read,perm_
write,perm_create,perm_unlink

checkout_user,Checkout User,model_library_
checkout,library_app.library_group_user,1,1,1,1

checkout_line_user,Checkout Line User,model_library_
checkout,library_app.library_group_user,1,1,1,1

256 Business Logic – Supporting Business Processes

5. Next, we want to add the checkout lines to the form. We will be adding it as the first
page of a notebook widget. Edit the views/checkout_view.xml file and, just
before the </sheet> element, add the following code:

 <notebook>

 <page name="lines">

 <field name="line_ids">

 <tree editable="bottom">

 <field name="book_id" />

 <field name="note" />

 </tree>

 </field>

 </page>

 </notebook>

The Checkouts form will look as follows:

Figure 8.2 – The Checkouts form with the notebook widget

The line's one-to-many field displays a list view that's nested in the parent form view. By
default, Odoo will look up a list view definition to use for rendering, which is typical for
any list view. If none are found, a default one will be automatically generated.

Exploring useful data model patterns 257

It is also possible to declare specific views inside <field>. We did this in the preceding
code. Inside the line_ids field element, there is a nested <tree> view definition that
will be used for this form.

Using stages and states for document-centered
workflows
In Odoo, we can implement workflows that are centered on documents. What we refer
to as documents can be things such as sales orders, project tasks, or HR applicants. All of
these are expected to follow a certain life cycle since they're created until they conclude.
Each work item is recorded in a document that will progress through a list of possible
stages until it is completed.

If we present these stages as columns in a board, and the documents as items in those
columns, we get a Kanban board, providing a quick view of all the work in progress.

There are two approaches to implementing these progress steps – states and stages:

• States is a closed selection list of predefined options. This is convenient for
implementing business rules since the possible states are fixed and known ahead
of time. Models and views have special support for the state special field name,
making it convenient to use. The closed states list is a disadvantage, in that it can't
easily accommodate custom process steps.

• Stages is a flexible list of process steps that are implemented through a related stages
model that can be configured to process specific needs. It is usually implemented
using a stage_id field name. The list of available stages is easy to modify as you
can remove, add, or reorder them. It has the disadvantage of not being reliable for
process automation. Since the list of stages can be changed, automation rules can't
rely on particular stage IDs or descriptions.

When we're designing the data model, we need to decide whether it should use stages
or states. If triggering business logic is more important than the ability to configure the
process steps, states should be preferred; otherwise, stages should be the preferred choice.

If you can't decide, there is an approach that can provide the best of both worlds: we can
use stages and map each stage to a corresponding state. The list of process steps can easily
be configured by users, and since each stage will be linked to some reliable state code, it
can also be confidently used to automate business logic.

258 Business Logic – Supporting Business Processes

This combined approach will be used for the library checkout feature. To implement the
checkout stages, we will add the library.checkout.stage model. The fields that are
needed to describe a stage are as follows:

• Name, or title.

• Sequence, which is used to order the stage columns.

• Fold, to be used by the Kanban view to decide what columns should be folded by
default. We usually want to set this on inactive item columns, such as Done
or Canceled.

• Active, to allow archived or no-longer-used stages, in case the process is changed.

• State, a closed selection list, which is used to map each stage to a fixed state.

To implement the preceding fields, we should start adding the Stages model, including the
model definition, views, menus, and access security:

1. Add the models/library_checkout_stage.py file and ensure it contains
the following model definition code:

from odoo import fields, models

class CheckoutStage(models.Model):

 _name = "library.checkout.stage"

 _description = "Checkout Stage"

 _order = "sequence"

 name = fields.Char()

 sequence = fields.Integer(default=10)

 fold = fields.Boolean()

 active = fields.Boolean(default=True)

 state = fields.Selection(

 [("new","Requested"),

 ("open","Borrowed"),

 ("done","Returned"),

 ("cancel", "Canceled")],

 default="new",

)

Exploring useful data model patterns 259

The preceding code shouldn't be surprising to you. Stages have a logical sequence,
so the order in which they are presented is important. This is ensured by
_order="sequence". We can also see the state field mapping each stage
to a basic state, which can be safely used by the business logic.

2. As usual, the new code file must be added to the models/__init__.py file,
which should then look like this:

from . import library_checkout_stage

from . import library_checkout

from . import library_checkout_line

3. Access security rules are also needed. Stages contain setup data, and it should
only be editable by the Manager user group. Regular users should have read-only
access. For this, add the following highlighted lines to the security/ir.model.
access.csv file:

id,name,model_id:id,group_id:id,perm_read,perm_
write,perm_create,perm_unlink

checkout_user,Checkout User,model_library_
checkout,library_app.library_group_user,1,1,1,1

checkout_line_user,Checkout Line

User,model_library_checkout,library_app.library_group_
user,1,1,1,1

checkout_stage_user,Checkout Stage User,model_library_
checkout_stage,library_app.library_group_user,1,0,0,0

checkout_stage_manager,Checkout Stage Manager,model_
library_checkout_stage,library_app.library_group_
manager,1,1,1,1

4. Next, a menu item is needed, to navigate to the stage's setup. This should be under
the Configurations menu in the app. The library_app module does not provide
one yet, so let's edit it to add this. Edit the library_app/views/library_
menu.xml file and add the following XML:

 <menuitem id="menu_library_configuration"

 name="Configuration"

 parent="menu_library"

 />

260 Business Logic – Supporting Business Processes

5. Now, the Stages menu item can be added under the Configurations menu. Edit
the library_checkout/views/library_menu.xml file and add the
following XML:

 <record id="action_library_stage"

 model="ir.actions.act_window">

 <field name="name">Stages</field>

 <field name="res_model">

 library.checkout.stage</field>

 <field name="view_mode">tree,form</field>

 </record>

 <menuitem id="menu_library_stage"

 name="Stages"

 action="action_library_stage"

 parent=

 "library_app.menu_library_configuration"

 />

6. We need some stages to work with, so let's add some default data to the module.
Create the data/library_checkout_stage.xml file with the following code:

<odoo noupdate="1">

 <record id="stage_new" model=

 "library.checkout.stage">

 <field name="name">Draft</field>

 <field name="sequence">10</field>

 <field name="state">new</field>

 </record>

 <record id="stage_open" model=

 "library.checkout.stage">

 <field name="name">Borrowed</field>

 <field name="sequence">20</field>

 <field name="state">open</field>

 </record>

 <record id="stage_done" model=

 "library.checkout.stage">

 <field name="name">Completed</field>

Exploring useful data model patterns 261

 <field name="sequence">90</field>

 <field name="state">done</field>

 </record>

 <record id="stage_cancel" model=

 "library.checkout.stage">

 <field name="name">Canceled</field>

 <field name="sequence">95</field>

 <field name="state">cancel</field>

 </record>

</odoo>

7. Before this can take effect, it needs to be added to the library_checkout/__
manifest__.py file, as follows:

 "data": [

 "security/ir.model.access.csv",

 "views/library_menu.xml",

 "views/checkout_view.xml",

 "data/library_checkout_stage.xml",

],

The following screenshot shows what the Stages list view is expected to look like:

Figure 8.3 – The Stages list view

This takes care of all the components that are needed to add the Stages model to
library_checkout and allow users to configure it.

262 Business Logic – Supporting Business Processes

Adding stage workflow support to models
Next, the stage field should be added to the library checkout model. For a proper user
experience, two more things should be taken care of:

• The default stage to assign should be the first with a new state.

• When grouping by stage, all the available stages should be present, even if there are
no checkouts in each of the stages.

These should be added to the library_checkout/models/library_checkout.
py file, in the Checkout class.

The function for finding the default stage should return the record that will be used as the
default value:

 @api.model

 def _default_stage_id(self):

 Stage = self.env["library.checkout.stage"]

 return Stage.search([("state", "=", "new")],

 limit=1)

This returns the first record in the stage model. Since the stage model is ordered by
sequence, it will return the one with the lowest sequence number.

When we're grouping by stages, we would like to see all the possible stages rather than
only the ones with checkout records. The method that's used for this should return a
recordset to use for the groups. In this case, it is appropriate to return all the active stages:

 @api.model

 def _group_expand_stage_id(self, stages, domain,

 order):

 return stages.search([], order=order)

Finally, the stage_id field we wish to add to the checkout model can use the preceding
methods for the default and group_expand attributes:

 stage_id = fields.Many2one(

 "library.checkout.stage",

 default=_default_stage_id,

 group_expand="_group_expand_stage_id")

 state = fields.Selection(related="stage_id.state")

Exploring useful data model patterns 263

stage_id has a many-to-one relationship with the stages model. The default value is
calculated by the _default_stage_id method function, and the groupby on stage_
id will use the result of the _group_expand_stage_id method function.

Changes in Odoo 10
The group_expand field attribute was introduced in Odoo 10 and is not
available in previous versions.

The group_expand parameter overrides the way grouping works on the field. The
default behavior for grouping operations is to only see the stages that are being used; the
stages with no checkout document won't be shown. But in the case of the stage_id
field, we want to see all the available stages, even if some don't have any items.

The _group_expand_stage_id() helper function returns the list of group records
that the grouping operation should use. In this case, it returns all the existing stages,
regardless of having library checkouts in that stage or not.

Note
The group_expand attribute must be a string with a method name. This is
unlike other attributes, such as default, which can be either strings or direct
references to the method name.

The state field was also added. It simply makes the stage-related state field in this
model available so that it can be used in views. This will use the special support for state
that views have available.

Methods to support the user interface
The following methods are mostly used by the web client to render the user interface and
perform basic interaction:

• name_get() computes the display name, which is the text that represents each
record that's used on views to display related records. It returns a list of (ID,
name) tuples, along with the ID. It is the default computation for the display_
name value and can be extended to implement custom display representations, such
as displaying an identifier code along with the record name.

• name_search(name="", args=None, operator="ilike",
limit=100) performs a search on the display name. It is used on views when
the user is typing in a relationship field to produce a list containing the suggested
records that match the typed text. It returns a list of (ID, name) tuples.

264 Business Logic – Supporting Business Processes

• name_create(name) creates a new record that only has a name as input. It
is used in Kanban views with on_create="quick_create", where you can
quickly create a related record by just providing its name. It can be extended to
provide specific defaults for the new records that are created through this feature.

• default_get([fields]) returns the default values for a new record to be
created, as a dictionary. The default values may depend on variables, such as the
current user or the session context. This can be extended to add additional default
values.

• fields_get() is used to describe the model's field definitions.

• fields_view_get() is used by the web client to retrieve the structure of the
UI view to render. It can be given the ID of the view as an argument, or the type of
view we want using view_type="form". For example, self.fields_view_
get(view_type="tree") will return the tree view XML architecture to be
rendered for the self model.

These built-in ORM models can be helpful as extension points to implement model-
specific business logic.

The next section will discuss how business logic can be triggered by record operations,
such as creating or writing on a record.

Using the ORM built-in methods
The model definition-related methods can do many things, but some business logic is not
possible through them, so it needs to be attached to the ORM record writing operations.

ORM provides methods to perform Create, Read, Update, and Delete (CRUD)
operations on our model data. Let's explore these write operations and how they can be
extended to support custom logic.

To read data, the main methods that are provided are search() and browse(),
as discussed in Chapter 7, Recordsets – Working with Model Data.

Methods for writing model data
The ORM provides three methods for the three basic write operations, shown as follows:

• <Model>.create(values) creates a new record on the model. It returns
the created record. values can be a dictionary or a list of dictionaries for
mass-creating records.

Using the ORM built-in methods 265

• <Recordset>.write(values) updates the recordset with the values
dictionary. It returns nothing.

• <Recordset>.unlink() deletes the records from the database. It returns nothing.

The values argument is a dictionary that maps field names to values to write. These
methods are decorated with @api.multi, except for the create() method, which is
decorated with @api.model.

Changes in Odoo 12
Being able to use create() to access a list of dictionaries, instead of a single
dictionary object, was introduced in Odoo 12. This also allows us to create
records in batches. This capability is supported through the special
@api.model_create_multi decorator.

In some cases, these methods need to be extended to run some specific business logic
when they are triggered. This business logic can be run before or after the main method
operations are executed.

Example of extending create()
Let's look at an example that makes use of this. We want to prevent new checkout records
from being created directly in the Borrowed or Returned states. Usually, validations
should be implemented in specific methods that are decorated with @api.constrains.
But this particular case is tied to the create record event and is hard to implement as a
regular validation.

Edit the library_checkout/models/library_checkout.py file and add the
create() extension method:

 @api.model

 def create(self, vals):

 # Code before create: should use the 'vals' dict

 new_record = super().create(vals)

 # Code after create: can use the 'new_record'

 # created

 if new_record.stage_id.state in ("open", "close"):

 raise exceptions.UserError(

 "State not allowed for new checkouts."

)

 return new_record

266 Business Logic – Supporting Business Processes

The new record is created by the super().create() call. Before this, the new record
is not available to use in the business logic – only the values dictionary can be used, or
even changed, to force values on the to-be-created record.

The code after super().create() does have access to the new record that's been
created and can use record features, such as accessing related records using dot-notation
chains. The preceding example uses new_record.stage_id.state to access the state
that corresponds to the new record stage. States are not user-configurable and provide a
reliable list of values to use in business logic. So, we can look for open or done states and
raise an error if any of them are found.

Example of extending write()
Let's look at another example. The Checkout model should keep track of the date when
the books were borrowed, Checkout Date, and the date when they were returned,
Close Date. This can't be done using computed fields. Instead, the write() method
should be extended to detect changes on the checkout state and then update the dates that
have been filed at the right moment: when changing into the open or close states.

Before we implement this logic, the two date fields must be created. Edit the library_
checkout/models/library_checkout.py file and add the following code:

 checkout_date = fields.Date(readonly=True)

 close_date = fields.Date(readonly=True)

When a record is modified, the checkout_date and close_date fields should be set
when the checkout record enters the appropriated states. For this, we will use a custom
write() method, as follows:

 def write(self, vals):

 # Code before write: 'self' has the old values

 if "stage_id" in vals:

 Stage = self.env["library.checkout.stage"]

 old_state = self.stage_id.state

 new_state =

 Stage.browse(vals["stage_id"]).state

 if new_state != old_state and new_state ==

 "open":

 vals['checkout_date'] = fields.Date.today()

 if new_state != old_state and new_state ==

 "done":

Using the ORM built-in methods 267

 vals['close_date'] = fields.Date.today()

 super().write(vals)

 # Code after write: can use 'self' with the updated

 # values

 return True

In the preceding example, the extension code was added before the super() call; so,
before the write operation is done on the self record. To know what change is about
to be made to the record, we can inspect the vals parameter. The stage_id value in
the vals dictionary is an ID number, not a record, so it needs to be browsed to get the
corresponding record, and then read the corresponding state.

The old and new states are compared to trigger the date value update at the appropriate
moment. Whenever possible, we prefer to change the values to write before the
super().write() instruction and modify the vals dictionary instead of setting the
field value directly. We'll see why in the next section.

Example of extending write() that sets values on fields
The previous code only modifies the values to use for the write; it does not assign values
directly to the model fields. This is safe to do, but it may not be enough in some cases.

Assigning a model field value inside a write() method leads to an infinite recursion
loop: the assignment triggers the write method again, which then repeats the assignment,
triggering yet another write call. This will repeat until Python returns a recursion error.

There is a technique to avoid this recursion loop, making it possible for write()
methods to set values on its record fields. The trick is to set a unique marker in the
environment's context before setting the values, and only run the setting values code
when that marker is not present.

An example will help make this clear. Let's rewrite the previous example so that the
updates are done after calling super(), rather than before:

 def write(self, vals):

 # Code before write: 'self' has the old values

 old_state = self.stage_id.state

 super().write(vals)

 # Code after write: can use 'self' with the updated

 # values

 new_state = self.stage_id.state

 if not self.env.context.get("_checkout_write"):

268 Business Logic – Supporting Business Processes

 if new_state != old_state and new_state == "open":

 self.with_context(

 _checkout_write=True).write(

 {"checkout_date": fields.Date.today()})

 if new_state != old_state and new_state ==

 "done":

 self.with_context(

 _checkout_write=True).write(

 {"close_date": fields.Date.today()})

 return True

With this technique, the extension code is guarded by an if statement and only runs if a
specific marker is not found in the context. Furthermore, the additional self.write()
operations use the with_context method to set that marker before doing the write.
This combination ensures that the custom login inside the if statement runs only once
and is not triggered on further write() calls, avoiding the infinite loop.

When (not) to extend the create() and write() methods
Extending the create() or write() methods should be carefully considered.

In most cases, some validation must be performed, or some value must be automatically
computed when the record is saved. For these common cases, there are better options, as
listed here:

• For field values that are automatically calculated based on other fields, use
computed fields. For example, you should calculate a header total when the values
of the lines are changed.

• For non-fixed field default values, use a function as the default field value. It will be
evaluated and used to assign the default value.

• To have other field values change when some field is changed, use the onchange
methods, if this is expected to be done on the user interface, or use the new
computed writable fields, if this needs to be done at the server side. For example,
when the user selects a customer, you can automatically set the price list to the
customer's one, though this price list selection can be changed by the user later.
When you're using the onchange methods, this only works on form view
interaction, not on direct write calls, though computed writable fields work in both
cases. The Adding onchange user interface logic section will provide more detail
about this.

Adding onchange user interface logic 269

• For validations, use constraint functions. These are automatically triggered
when the field value changes and are expected to raise errors if the validation
conditions fail.

There are still cases where none of these options will work and extending create() or
write() is needed, such as when the default values to set depend on the other fields of
the record that's being created. In this case, a default value function won't work because it
does not have access to the other field values of the new record.

Methods for data import and export
Data import and export, as discussed in Chapter 5, Importing, Exporting, and Module
Data, is also available from the ORM API, through the following methods:

• load([fields], [data]) is used to import data and is used by Odoo when
importing CSV or spreadsheet data into Odoo. The first argument is the list of fields
to import, and it maps directly to a CSV top row. The second argument is a list of
records, where each record is a list of string values to parse and import. It maps
directly to the CSV data rows and columns and implements the features of CSV
data import, such as external identifiers support.

• export_data([fields]) is used by the web client's Export function. It
returns a dictionary with a datas key containing the data; that is, a list of rows.
The field names can use the .id and /id suffixes that are used in CSV files, and the
data is in a format that's compatible with an importable CSV file.

It is also possible to implement automation on the user interface, while the user is editing
data. We'll learn about this in the next section.

Adding onchange user interface logic
It is possible to make changes to the web client view while the user is editing it. This
mechanism is known as onchange. It is implemented through methods decorated with
@api.onchange, and they are triggered by the user interface view when the user edits a
value on a particular field.

Since Odoo 13, the same effect can be achieved by using a particular form of computed
fields, called computed writable fields. This ORM improvement aims to avoid some
limitations of the classic onchange mechanism, and in the long run, it should replace
it completely.

270 Business Logic – Supporting Business Processes

Classic onchange methods
Onchange methods can change other field values in the form, perform a validation, show
a message to the user, or set a domain filter in relation fields, limiting the available options.

The onchange method is called asynchronously and returns data that's being used by the
web client to update the fields in the current view.

Onchange methods are linked to the triggering fields, which are passed as arguments to
the @api.onchange("fld1", "fld2", ...) decorator.

Note
The api.onchange arguments do not support dot notation; for example,
"partner_id.name". If used, it will be ignored.

Inside the method, the self argument is a virtual record that contains the current form
data. It is virtual because it can be a new or changed record that is still being edited and
hasn't been saved to the database yet. If values are set on this self record, these will
be changed on the user interface form. Notice that it doesn't write to database records;
instead, it provides information so that you can change the data in the UI form.

Note
Other restrictions apply to onchange methods, as documented at https://
www.odoo.com/documentation/15.0/developer/
reference/backend/orm.html#odoo.api.onchange.
Computed writable fields can be used as a full-featured alternative to
onchanges. See the The new onchange, with computed writable fields section for
more information.

No return value is needed, but a dict structure may be returned with a warning message
to display in the user interface, or a domain filter to be set on form fields.

Let's work with an example. On the checkout form, when the library member is selected,
the request date will be set to today. If the date changed, a warning message will be
shown to the user, alerting them about it.

https://www.odoo.com/documentation/15.0/developer/reference/backend/orm.html#odoo.api.onchange
https://www.odoo.com/documentation/15.0/developer/reference/backend/orm.html#odoo.api.onchange
https://www.odoo.com/documentation/15.0/developer/reference/backend/orm.html#odoo.api.onchange

Adding onchange user interface logic 271

To implement this, edit the library_checkout/models/library_checkout.py
file and add the following method:

 @api.onchange("member_id")

 def onchange_member_id(self):

 today_date = fields.Date.today()

 if self.request_date != today_date:

 self.request_date = today_date

 return {

 "warning": {

 "title": "Changed Request Date",

 "message": "Request date changed to

 today!",

 }

 }

The previous onchange method is triggered when the member_id field is set on the
user interface. The actual method name is not relevant, but the convention is for its name
to begin with the onchange_ prefix.

Inside an onchange method, self represents a single virtual record containing all of the
fields that have currently been set in the record being edited, and we can interact with them.

The method code checks whether the current request_date needs to be changed. If
it does, request_date is set to today so that the user will see that change in the form.
Then, a non-blocking warning message is returned to the user.

The onchange methods do not need to return anything, but they can return a dictionary
containing a warning or a domain key, as follows:

• The warning key should describe a message to show in a dialog window, such as
{"title": "Message Title", "message": "Message Body"}.

• The domain key can set or change the domain attribute of other fields. This allows
you to build more user-friendly interfaces; having a to-many field only makes the
options that make sense at that moment available. The value for the domain key
looks like {"user_id": [("email", "!=", False)]}.

272 Business Logic – Supporting Business Processes

The new onchange, with computed writable fields
The classic onchange mechanism has a key role in the user experience that's provided by
the Odoo framework. However, it has a few important limitations.

One is that it works disconnected from the server-side events. Onchange is only played
when requested by the form view and is not called as a consequence of an actual
write() value change. This forces the server-side business logic to explicitly replay the
relevant onchange methods.

Another limitation is that onchange is attached to the triggering fields and not to the
change-affected fields. In non-trivial cases, this becomes hard to extend and makes it
difficult to track the source of the changes.

To address these issues, the Odoo framework expanded the computed field capabilities
so that it can also address the onchange use case. We will call this technique computed
writable fields. The classic onchange is still supported and used, but it is expected to be
replaced by computed fields and become deprecated in future versions.

Changes in Odoo 13
Computed writable fields were introduced in Odoo 13 and are available for that
version and later ones.

Computed writable fields have compute methods assigned to them, must be stored, and
must have the readonly=False attribute.

Let's implement the previous onchange using this technique instead. This is how the
request_date field definition should be changed:

 request_date = fields.Date(

 default=lambda s: fields.Date.today(),

 compute="_compute_request_date_onchange",

 store=True,

 readonly=False,

)

This is a regular stored and writable field, but it has attached a compute method that
can be triggered in particular conditions. For example, the computed method should be
triggered when the member_id field changes.

The message and activity features 273

This is the code for the compute method, _compute_request_date_onchange:

 @api.depends("member_id")

 def _compute_request_date_onchange(self):

 today_date = fields.Date.today()

 if self.request_date != today_date:

 self.request_date = today_date

 return {

 "warning": {

 "title": "Changed Request Date",

 "message": "Request date changed to

 today!",

 }

 }

@api.depends works as usual for computed fields and declares the fields to watch for
changes. The actual field list to provide is the same as the one that's used by the classic
@api.onchange.

The method code can be very similar to the equivalent onchange method. In this
particular case, it is identical. Note that the computed field is not ensured to be set a value
on every method call. This only happens when some conditions are met. In this case, the
original request date is different from today's date. This goes against regular computed
field rules but is allowed for computed writable fields.

Particularly relevant to business processes is the ability to send emails or notify users. The
next section discusses the features that Odoo provides for this.

The message and activity features
Odoo has global messaging and activity planning features available, all of which are
provided by the Discuss application, and a mail technical name.

The messaging features are added by the mail.thread model and make a message
widget on form views available, also known as Chatter. This widget allows you to log notes
or send messages to other people. It also keeps a history of the messages that have been
sent, and it is also used by automatic processes to log progress tracking messages.

The same app also provides activity management features through the mail.activity.
mixin model. The activity widget can be added to the form view to allow users to
schedule and track the history of activities.

274 Business Logic – Supporting Business Processes

Adding message and activity features
The mail module provides the mail.thread abstract class, which is used to add the
messaging features to any model, and mail.activity.mixin, which does the same
for the planned activity features. In Chapter 4, Extending Modules, we explained how to
add these inherited features to models using the inheritance from mixin abstract classes.

Let's go through the necessary steps:

1. Add the mail module dependency to the library_checkout add-on module
by editing the 'depends' key in the library_checkout/__manifest__.py
file, as follows:

 "depends": ["library_member", "mail"],

2. To have the library.checkout model inherit from the message and activity
abstract classes, edit the library_checkout/models/library_checkout.py
files, as follows:

class Checkout(models.Model):

 _name = "library.checkout"

 _description = "Checkout Request"

 _inherit = ["mail.thread", "mail.activity.mixin"]

3. To add the message and activity fields to the checkout form view, edit the
library_checkout/ and views/checkout_view.xml files:

 <record id="view_form_checkout" model="ir.ui.view">

 <field name="name">Checkout Form</field>

 <field name="model">library.checkout</field>

 <field name="arch" type="xml">

 <form>

 <sheet>

 <group>

 <field name="member_id" />

 <field name="request_date" />

 <field name="user_id" />

The message and activity features 275

 </group>

 <notebook>

 <page name="lines">

 <field name="line_ids">

 <tree editable="bottom">

 <field name="book_id" />

 <field name="note" />

 </tree>

 </field>

 </page>

 </notebook>

 </sheet>

 <div class="oe_chatter">

 <field name="message_follower_ids"

 widget="mail_followers" />

 <field name="activity_ids"

 widget="mail_activity"/>

 <field name="message_ids"

 widget="mail_thread" />

 </div>

 </form>

 </field>

 </record>

</odoo>

Having done this, the checkout model will have the message and activity fields and their
features available.

276 Business Logic – Supporting Business Processes

Message and activity fields and models
The message and activity features add new fields to the models that inherit the mail.
thread and mail.activity.mixin classes, along with all the supporting models for
these features. These are the basic data structures that have been added.

The mail.thread mixin class makes two new fields available:

• Followers: message_follower_ids has a one-to-many relationship with
mail.followers and stores the message followers that should receive
notifications. Followers can either be partners or channels. A partner represents a
specific person or organization. A channel is not a particular person and instead
represents a subscription list.

• Messages: message_ids has a one-to-many relationship with mail.message
records and lists the record message history.

The mail.activity.mixin mixin class adds the following new field:

• Activities: activity_ids has a one-to-many relationship with mail.
activity and stores activities that have been completed or planned.

Message subtypes
Messages can be assigned a subtype. Subtypes can identify particular events, such as a
task being created or closed, and are useful for fine-tuning what notifications should be
sent to whom.

Subtypes are stored in the mail.message.subtype model and can be configured in
the Settings | Technical | Email | Subtypes menu.

The basic message subtypes that are available are as follows:

• Discussions, with the mail.mt_comment XML ID, are used for the messages that
are sent through the Send message option in the message widget. Followers will be
sent a message notification about this.

• Note, with the mail.mt_note XML ID, is used by the messages that are created
with the Log note XML ID, which do not send out notifications.

• Activities, with the mail.mt_activities XML ID, are used for the messages
that are created with the Schedule activity link. It is not intended to send a
notification.

The message and activity features 277

Apps can add their own subtypes, which are usually linked to relevant events. For
example, the Sales app adds two subtypes: Quotation sent and Sales Order
Confirmed. These are used by the app's business logic when you're logging these events
in the message history.

Subtypes allow you to determine when notifications should be sent out and to whom.
The followers menu, at the top right of the messages widget, allows you to add or remove
followers, as well as selecting the particular subtypes they will receive notifications about.
The following screenshot shows the subtype selection form for a specific follower – Deco
Addict, in this case:

Figure 8.4 – Followers widget to select the active message subtypes

The subtype subscription flags can be edited manually, and their default value is
configured on editing the Subtype definition to check the Default field. When it is set, the
followers on new records will receive notifications by default.

Other than the built-in subtypes, add-on modules add their own subtypes. A subtype can
be global or intended for a particular model. In the latter case, the subtype's res_model
field identifies the model it applies to.

278 Business Logic – Supporting Business Processes

Posting messages
Module business logic can make use of the messaging system to send notifications to users.

The message_post() method is used to post a message. Here is an example:

self.message_post("Hello!")

The preceding code adds a simple text message but sends no notification to the
followers. This is because, by default, messages are posted using Log a Note, with the
subtype="mail.mt_note" parameter.

To have the message send a notification as well, the mail.mt_comment subtype should
be used, as shown in the following example:

self.message_post(

 "Hello again!",

 subject="Hello",

 subtype='mail.mt_comment",

)

The message body is HTML, so we can include markup for text effects, such as for
bold text or <i> for italics.

The message body will be sanitized for security reasons, so some particular HTML
elements may not make it to the final message.

Adding followers
Also useful from a business logic viewpoint is the ability to automatically add followers
to a document so that they can then get the corresponding notifications. There are a few
methods available to add followers, as follows:

• message_subscribe(partner_ids=<list of int IDs>) adds partners

• message_subscribe(channel_ids=<list of int IDs>) adds channels

• message_subscribe_users(user_ids=<list of int IDs>) adds users

The default subtypes will be applied to each subscriber. To force a user to subscribe to
a specific list of subtypes, you can add the subtype_ids=<list of int IDs>
attribute, which lists the specific subtypes to enable for the subscription. If this is used,
it will also reset the existing follower-subscribed subtypes to the specified ones.

Creating a wizard 279

Creating a wizard
Wizards are user interface patterns that provide rich interaction for the user, usually to
provide input for an automated process.

As an example, the checkout module will provide a wizard for library users to mass
email borrowers. For example, they could select the oldest checkouts with borrowed books
and send them all a message, requesting for the books to be returned.

Users start by going to the checkouts list view, selecting the checkout records to use, and
then selecting a Send Messages option from the Action context menu. This will open
the wizard form, allowing them to write the message subject and body. Clicking the Send
button will send an email to each person that borrowed the selected checkouts.

The wizard model
A wizard displays a form view to the user, usually as a dialog window, with some fields
to be filled in and buttons to trigger some business logic. These will then be used for the
wizard's logic.

This is implemented using the same model/view architecture that's used for regular views,
but the supporting model is based on models.TransientModel instead of models.
Model. This type of model has a database representation too, which is used to store the
wizard's state. The wizard data is temporary, to allow the wizard to complete its work.
A scheduled job regularly cleans up the old data from the wizard database tables.

The library_checkout/wizard/library_checkout_massmessage.py
file will create the model data structure that's needed for the user interaction: the list of
checkout records to be notified, the message subject, and the message body.

Follow these steps to add the wizard to the library_checkout module:

1. First, edit the library_checkout/__init__.py file to import the code into
the wizard/ subdirectory, as follows:

from . import models

from . import wizard

2. Add the wizard/__init__.py file with the following line of code:

from . import checkout_mass_message

280 Business Logic – Supporting Business Processes

3. Then, create the actual wizard/checkout_mass_message.py file, as follows:

from odoo import api, exceptions, fields, models

class CheckoutMassMessage(models.TransientModel):

 _name = "library.checkout.massmessage"

 _description = "Send Message to Borrowers"

 checkout_ids = fields.Many2many(

 "library.checkout",

 string="Checkouts",

)

 message_subject = fields.Char()

 message_body = fields.Html()

With that, we have prepared the basic data structures that are needed for the wizard.

Note that regular models shouldn't have relationship fields that use transient models.

The consequence of this is that transient models shouldn't have one-to-many relationships
with regular models. The reason for this is that the one-to-many relationship on the
transient model would require the regular model to have the inverse many-to-one
relationship with the transient model, which would cause issues with automatically
cleaning up transient records.

The alternative to this is to use a many-to-many relationship. Many-to-many relationships
are stored in a dedicated table, and the rows in this table are automatically deleted when
either side of the relationship is deleted.

The wizard's access security
Just like regular models, transient models also need access security rules to be defined
on them. This is done in the same way as it is for regular modules – usually, in the
security/ir.model.access.csv file.

Changes in Odoo 13
Up until Odoo 12, transient models did not need access security rules. This
changed in Odoo 13, so now, transient models require access rules, just like
regular models do.

Creating a wizard 281

To add ACLs for the wizard's model, edit the security/ir.model.access.csv file
and add the following highlighted line:

id,name,model_id:id,group_id:id,perm_read,perm_write,perm_
create,perm_unlink

checkout_user,Checkout User,model_library_checkout,library_app.
library_group_user,1,1,1,1

checkout_line_user,Checkout Line

checkout_user,Checkout User,model_library_checkout,library_app.
library_group_user,1,1,1,1

checkout_stage_user,Checkout Stage User,model_library_checkout_
stage,library_app.library_group_user,1,0,0,0

checkout_stage_manager,Checkout Stage Manager,model_library_
checkout_stage,library_app.library_group_manager,1,1,1,1

checkout_massmessage_user,Checkout Mass Message User,model_
library_checkout_massmessage,library_app.library_group_
user,1,1,1,1

Adding one line is enough to add full access to the Library User group; no specific access
rights are needed for the Library Manager group.

The wizard form
The wizard form views are defined in the same way as they are for regular models, except
for two specific elements:

• A <footer> section can be used to replace the action buttons.

• A special="cancel" button is available to interrupt the wizard without
performing any action.

The following is the content of the wizard/checkout_mass_message_wizard_
view.xml file:

<odoo>

 <record id="view_form_checkout_message"

 model="ir.ui.view">

 <field name="name">Library Checkout Mass Message

 Wizard</field>

 <field name="model">

 library.checkout.massmessage</field>

282 Business Logic – Supporting Business Processes

 <field name="arch" type="xml">

 <form>

 <group>

 <field name="message_subject" />

 <field name="message_body" />

 <field name="checkout_ids" />

 </group>

 <footer>

 <button type="object"

 name="button_send"

 string="Send Messages" />

 <button special="cancel"

 string="Cancel"

 class="btn-secondary" />

 </footer>

 </form>

 </field>

 </record>

 <record id="action_checkout_message"

 model="ir.actions.act_window">

 <field name="name">Send Messages</field>

 <field name="res_model">

 library.checkout.massmessage</field>

 <field name="view_mode">form</field>

 <field name="binding_model_id"

 ref="model_library_checkout" />

 <field name="binding_view_types">form,list</field>

 <field name="target">new</field>

 </record>

</odoo>

Creating a wizard 283

The previous XML code adds two data records – one for the wizard form view and
another for the action to open the wizard.

The ir.actions.act_window window action record is made available in the Action
context menu using the binding_model_id field value.

Remember to add this file to the manifest file:

 "data": [

 "security/ir.model.access.csv",

 "wizard/checkout_mass_message_wizard_view.xml",

 "views/library_menu.xml",

 "views/checkout_view.xml",

 "data/library_checkout_stage.xml",

],

The wizard form will look as follows:

Figure 8.5 – The Send Messages wizard form

To open the wizard, the user should select one or more records on the checkout list view
and choose the Send Messages option via the Action menu, which is available at the top
of the list view.

284 Business Logic – Supporting Business Processes

The wizard business logic
At this point, the action opens the wizard form, but it is not capable of performing any
operations on the records yet. To start with, we would like the wizard to present the list of
records that were selected in the checkout list view.

When the wizard form is opened, it displays an empty form. It is not a record yet; this will
only happen when you click on a button that's calling a method.

Note
When the wizard form is opened, we have an empty record. The create()
method hasn't been invoked yet; this will only happen when we press a button.
So, it can't be used to set the initial values to be presented in a wizard form.

It is still possible to populate data on the empty form by setting default values on the
fields. default_get() is an ORM API method that's in charge of computing the default
values for a record. It can be extended to add custom logic, like so:

 @api.model

 def default_get(self, field_names):

 defaults_dict = super().default_get(field_names)

 # Add values to the defaults_dict here

 return defaults_dict

The preceding method function can be used to add the default value for the checkout_
ids field. But we still need to know how to access the list of records that will be selected
in the origin list view.

When you're navigating from a client window to the next, the web client stores some data
about the origin view in the environment's context. This data is as follows:

• Active_model, which is the technical name of the model

• Active_id, which is the ID of the form active record or the tree view's first
record, if you're navigating from a list

• active_ids, which is a list that contains the selected records or just one element
if you're navigating from a form

• active_domain, if the action is triggered from a form view

Creating a wizard 285

In this case, active_ids can be used to get the record IDs that have been selected
in the list view and set the default value on the checkout_ids field. This is what the
default_get method looks like:

 @api.model

 def default_get(self, field_names):

 defaults_dict = super().default_get(field_names)

 checkout_ids = self.env.context["active_ids"]

 defaults_dict["checkout_ids"] = checkout_ids

 return defaults_dict

First, super() is used to call the framework's default_get() implementation, which
returns a dictionary containing default values. Then, the checkout_id key is added to
defaults_dict, with the active_ids value read from the environment's context.

With this, when the wizard form is opened, the checkout_ids field will be
automatically populated with the records that have been selected. Next, the logic for the
form's Send Messages button needs to be implemented.

Upon inspecting the form XML code, we can see that button_send is the name of the
function that's called by the button. It should be defined in the wizard/checkout_
mass_message.py file, as shown in the following code:

 def button_send(self):

 self.ensure_one()

 for checkout in self.checkout_ids:

 checkout.message_post(

 body=self.message_body,

 subject=self.message_subject,

 subtype='mail.mt_comment',

)

 return True

The method is designed to work with a single record and would not work correctly if
self was a recordset instead of a singleton. To make this explicit, self.ensure_
one() is being used.

Here, self represents the wizard record data, which was created when the button was
pressed. It contains the data that was entered on the wizard form. Validation is performed
to ensure a message body text is provided by the user.

286 Business Logic – Supporting Business Processes

The checkout_id field is accessed, and a loop iterates through each of its records. For
each checkout record, a message is posted using the mail.thread API. The mail.mt_
comment subtype must be used for a notification email to be sent to the record followers.
The message's body and subject are taken from the self record fields.

It is good practice for methods to always return something – the True value at the very
least. The sole reason for this is that some XML-RPC clients don't support None values.
When a Python function has no explicit return, it implicitly returns the None value. In
practice, you may not be aware of the issue because the web client uses JSON-RPC, not
XML-RPC, but it is still a good practice to follow.

Wizards are the most complex tools in our business logic toolbox and close out the list of
techniques that will be presented in this chapter.

Business logic also involves testing if the right conditions are being met before or after
running some operation. The next section explains how to trigger exceptions when this
doesn't happen.

Raising exceptions
There are times where the inputs are inappropriate for the task to perform, and the code
needs to warn the user about it and interrupt the program's execution with an error
message. This is done by raising an exception. Odoo provides exception classes that
should be used in these situations.

The most useful Odoo exceptions are as follows:

from odoo import exceptions

raise exceptions.ValidationError("Inconsistent data")

raise exceptions.UserError("Wrong input")

The ValidationError exception should be used for validations in Python code, such
as the ones in @api.constrains decorated methods.

The UserError exception should be used in all other cases where some action should
not be allowed because it goes against business logic.

As a general rule, all data manipulation that's done during method execution is done in a
database transaction and rolled back when an exception occurs. This means that, when an
exception is raised, all of the previous data changes are canceled.

Raising exceptions 287

Let's look at an example of using the wizard's button_send method. If we think about
it, it doesn't make any sense to run the send message's logic if no checkout document was
selected. And it doesn't make sense to send messages with no message body. Let's warn
the user if any of these things happen.

To do so, edit the button_send() method and add the following highlighted code:

 def button_send(self):

 self.ensure_one()

 if not self.checkout_ids:

 raise exceptions.UserError(

 "No Checkouts were selected."

)

 if not self.message_body:

 raise exceptions.UserError(

 "A message body is required"

)

 for checkout in self.checkout_ids:

 checkout.message_post(

 body=self.message_body,

 subject=self.message_subject,

 subtype='mail.mt_comment',

)

 return True

When you're using exceptions, make sure that the from odoo import exceptions
instruction is added to the top of the code file. Adding validations is as simple as checking
that some conditions have been met and raising an exception if they haven't been.

The next section discusses the development tools that every Odoo developer should be
familiar with. We will start with automated tests.

288 Business Logic – Supporting Business Processes

Writing unit tests
Automated tests are generally accepted as a best practice in software. They not only help
ensure code is correctly implemented, but more importantly, they provide a safety net for
future code changes or rewrites.

In the case of dynamic programming languages, such as Python, there is no compilation
step and syntax errors can go unnoticed. Ensuring there's test code coverage is particularly
important for detecting code writing mistakes, such as a mistyped identifier name.

These two goals provide a guiding light to test writing. One goal should be test coverage –
writing test cases that run all your lines of code.

This alone will usually make good progress on the second goal, which is to verify the
correctness of the code. This is because, after working on code coverage tests, we will
surely have a great starting point to build additional test cases for non-trivial use cases.

Changes in Odoo 12
In earlier Odoo versions, tests could also be described using YAML data
files. With Odoo 12, the YAML data file engine was removed, and this type
of file is not supported anymore. The last piece of documentation on it is
available at https://doc.odoo.com/v6.0/contribute/15_
guidelines/coding_guidelines_testing/.

Next, we will learn how to add unit tests to a module and then run them.

Adding unit tests
Add-on module tests must be added to a tests/ subdirectory. The test runner will
automatically discover tests in the subdirectories with this particular name, and the
module's top __init__.py file should not import them.

To add tests for the wizard logic that was created in the library_checkout add-on
module, we will start by creating the tests/__init__.py file and importing the test
files to be used. In this case, it should contain the following line of code:

from . import test_checkout_mass_message

Writing unit tests 289

Then, we must create the tests/test_checkout_mass_message.py file and
ensure it has the basic skeleton for the unit test code:

from odoo import exceptions

from odoo.tests import common

class TestWizard(common.SingleTransactionCase):

 def setUp(self, *args, **kwargs):

 super(TestWizard, self).setUp(*args, **kwargs)

 # Add test setup code here...

 def test_01_button_send(self):

 """Send button should create messages on

 Checkouts"""

 # Add test code

Odoo provides a few classes to use for tests, as follows:

• TransactionCase uses a different transaction for each test, which is
automatically rolled back at the end.

• SingleTransactionCase runs all the tests in a single transaction, which are
only rolled back at the end of the last test. This can speed up tests significantly, but
the individual tests need to be written in such a way that they are compatible.

These test classes are wrappers around the unittest test cases, which are part of
the Python standard library. For more details on this, you can refer to the official
documentation at https://docs.python.org/3/library/unittest.html.

The setUp() method is where test data is prepared and is usually stored as class
attributes so that it is available to the test methods.

Tests are implemented as class methods, such as the test_01_button_send()
example in the previous code. The test case method names must begin with the test_
prefix. This is what allows them to be discovered by the test runner. Test methods are run
in the order of the test function names.

The docstring method is printed to the server log when the tests are run and should be
used to provide a short description of the test that's being performed.

290 Business Logic – Supporting Business Processes

Running tests
Once the tests have been written, it is time to run them. For that, you must upgrade or
install the modules to test (-I or -u) and add the–-test-enable option to the Odoo
server command.

The command will look like this:

(env15) $ odoo -c library.conf --test-enable -u library_
checkout --stop-after-init

Only the installed or upgraded modules will be tested – that's why the -u option was
used. If some dependencies need to be installed, their tests will run too. If you don't want
this to happen, then install the new modules and then run the tests while upgrading (-u)
the module to test.

Although the module contains testing code, this code doesn't test anything yet and should
run successfully. If we take a closer look at the server log, there should be INFO messages
reporting the test runs, similar to this:

INFO library odoo.modules.module: odoo.addons.library_checkout.
tests.test_checkout_mass_message running tests.

The test code skeleton is ready. Now, the actual testing code needs to be added. We should
start with setting up the data.

Setting up tests
The first step when writing tests is to prepare the data to use. This is typically done in the
setUp method. For our example, a checkout record is needed so that it can be used in the
wizard tests.

It is convenient to perform the test actions as a specific user to also test that access control
has been configured properly. This can be achieved using the sudo(<user>) model
method. Recordsets carry that information with them, so after being created using sudo(),
later operations in the same recordset will be performed using that same context.

This is the code for the setUp method:

from odoo import exceptions

from odoo.tests import common

class TestWizard(common.SingleTransactionCase):

Writing unit tests 291

 def setUp(self, *args, **kwargs):

 super().setUp(*args, **kwargs)

 # Setup test data

 admin_user = self.env.ref('base.user_admin')

 self.Checkout = self.env['library.checkout']\

 .with_user(admin_user)

 self.Wizard = self.env[

 'library.checkout.massmessage']\

 .with_user(admin_user)

 a_member = self.env['library.member']\

 .create({'partner_id':

 admin_user.partner_id.id})

 self.checkout0 = self.Checkout\

 .create({'member_id': a_member.id})

Now, we can use the self.checkout0 record and the self.Wizard model for
our tests.

Writing test cases
Now, let's expand the test_button_test() method that we saw in the initial skeleton
to implement the tests.

A basic test runs some code on the tested object, gets a result, and then uses an assert
statement to compare it with an expected result. The message posting logic does not
return any value to check, so a different approach is needed.

The button_send() method adds a message to the message history. One way to check
if this happened is to count the number of messages before and after running the method.
The test code can count the number of messages before and after the wizard. The following
code adds this:

 def test_01_button_send(self):

 """Send button creates messages on Checkouts"""

 count_before = len(self.checkout0.message_ids)

 # TODO: run wizard

 count_after = len(self.checkout0.message_ids)

 self.assertEqual(

 count_before + 1,

 count_after,

292 Business Logic – Supporting Business Processes

 "Expected one additional message in the

 Checkout.",

)

The check for verifying whether the test succeeded or failed is the self.assertEqual
statement. It compares the number of messages before and after running the wizard. It is
expected to find one more message than it did previously. The last parameter provides an
optional but recommended message that's printed when the test fails.

The assertEqual function is just one of the assert methods that's available. The
appropriate assert function should be selected for the check to perform. The unittest
documentation provides a good reference for all of the methods. It can be found at
https://docs.python.org/3/library/unittest.html#test-cases.

Running the wizard is not straightforward, and the user interface workflow needs to be
mimicked. Recall that the environment's context is used to pass data to the wizard, on the
active_ids key. We must create a wizard record with the values that have been filled in
the wizard form for the message subject and body and then run the button_send method.

The complete code looks like this:

 def test_01_button_send(self):

 """Send button creates messages on Checkouts"""

 count_before = len(self.checkout0.message_ids)

 Wizard0 = self.Wizard\

 .with_context(active_ids=self.checkout0.ids)

 wizard0 = Wizard0.create({

 "message_subject": "Hello",

 "message_body": "This is a message.",

 })

 wizard0.button_send()

 count_after = len(self.checkout0.message_ids)

 self.assertEqual(

 count_before + 1,

 count_after,

 "Expected one additional message in the

 Checkout.",

)

Writing unit tests 293

The with_context model method is used to add active_ids to the environment's
context. Then, the create() method is used to create the wizard record and add the
user-entered data. Finally, the button_send method is called.

More test cases are added with additional methods for the test class. Remember, with
TransactionCase tests, a rollback is done at the end of each test and the operations
that were performed in the previous test are reverted. With SingleTransactionCase,
tests build each other up, and the test run sequence is important. Since tests are run in
alphabetical order, the names that are chosen for the test methods are relevant. To make
this clearer, it is a good practice to add a number at the beginning of the test method
names, as we did in the preceding example.

Testing exceptions
In some cases, the code is expected to raise an exception, and that should also be tested.
For example, we can test whether validation is being performed correctly.

Continuing with the wizard tests, validation is performed to check for an empty message
body. A test can be added to check that this validation is done properly.

To check whether an exception has been raised, the corresponding code must be placed
inside a with self.assertRaises() code block.

Another method should be added for this test, as follows:

 def test_02_button_send_empty_body(self):

 """Send button errors on empty body message"""

 Wizard0 = self.Wizard\

 .with_context(active_ids=self.checkout0.ids)

 wizard0 = Wizard0.create({})

 with self.assertRaises(exceptions.UserError) as e:

 wizard0.button_send()

If the button_send() method doesn't raise UserException, the test will fail. If it
does raise that exception, the test will succeed. The exception that's raised is stored in the
e variable, which could be inspected by additional method commands – for example, to
verify the content of the error message.

294 Business Logic – Supporting Business Processes

Using log messages
Writing messages to the log file is useful for monitoring and auditing running systems.
It can also help with code maintenance, making it easier to get debug information from
running processes, without the need to change code.

To use logging in Odoo code, first, a logger object must be prepared. For this, add the
following code lines at the top of the library_checkout/wizard/checkout_
mass_message.py file:

import logging

_logger = logging.getLogger(__name__)

The logging Python standard library module is being used here. The _logger object is
initialized using the name of the current code file, __name__. With this, the log messages
will include information about the file that generated them.

There are several levels available for log messages. These are as follows:

_logger.debug('A DEBUG message')

_logger.info('An INFO message')

_logger.warning('A WARNING message')

_logger.error('An ERROR message')

We can now use the logger to write messages to the Odoo server log.

This log can be added to the button_send wizard method. Add the following
instruction before the ending line; that is, return True:

 _logger.info(

 "Posted %d messages to the Checkouts: %s",

 len(self.checkout_ids),

 str(self.checkout_ids),

)

With this code, when the wizard is used to send messages, a message similar to the
following will be printed to the server log:

INFO library odoo.addons.library_checkout.wizard.checkout_mass_
message: Posted 2 messages to the Checkouts: [3, 4]

Using log messages 295

Notice that Python string interpolation – that is, using the % operator – was not used
in the log message. More specifically, instead of _logger.info("Hello %s" %
"World"), what was used was something like _logger.info("Hello %s",
"World"). Not using interpolation means one less task for the code to perform at
runtime, which makes logging more efficient. So, the variables should always be provided
as additional log parameters.

The timestamps of server log messages always use UTC. This may come as a surprise and
comes from the fact that the Odoo server internally handles all dates in UTC.

For debug-level log messages, _logger.debug() is used. As an example, add the
following debug log message right after the checkout.message_post() instruction:

 _logger.debug(

 "Message on %d to followers: %s",

 checkout.id,

 checkout.message_follower_ids)

By default, this won't print anything to the server log, since the default log level is INFO.
The log level needs to be set to DEBUG for the debug messages to be printed to the log.

The Odoo --log-level command option sets the general log level. For example,
adding --log-level=debug to the command line enables all debug log messages.

This can be fine-tuned and have a specific log level set only for particular modules. To
enable debug messages only for this wizard code, use the --log-handler option. This
can be used several times to set the log level for several modules.

For example, the Python module for the wizard is odoo.addons.library_
checkout.wizard.checkout_mass_message, as shown in the INFO log messages.
To set a debug log level for it, use the following command-line option:

--log-handler=

odoo.addons.library_checkout.wizard.checkout_mass_message:DEBUG

The complete reference to the Odoo server logging options can be found in the official
documentation: https://www.odoo.com/documentation/15.0/developer/
misc/other/cmdline.html.

Tip
If you want to get into the nitty-gritty details of Python logging, the official
documentation is a good place to start: https://docs.python.
org/3/library/logging.html.

https://www.odoo.com/documentation/15.0/developer/misc/other/cmdline.html
https://www.odoo.com/documentation/15.0/developer/misc/other/cmdline.html
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html

296 Business Logic – Supporting Business Processes

Logging is a useful tool, but it's short when it comes to debugging. There are a few tools
and techniques that are available to help developers with their work. We'll look at these in
the next section.

Learning about the available developer tools
There are a few tools to ease developers' work. The web interface's Developer Mode,
which we introduced earlier in this book, is one of them. A server developer mode option
is also available that provides some developer-friendly features. It will be explained in
more detail next. After that, we will discuss how to debug code on the server.

Server development options
The Odoo server provides a --dev option, which enables developer features to speed up
the development cycle, such as the following:

• Entering the debugger when an exception is found in an add-on module. This is
done by setting a debugger. pdb is the default one.

• Reloading Python code automatically when a Python code file is saved, avoiding a
manual server restart. This can be enabled with the reload option.

• Reading view definitions directly from XML files, avoiding manual module
upgrades. This can be enabled with the xml option.

• A Python debugging interface is used directly in the web browser. This can be
enabled with the werkzeug option.

The --dev option accepts a comma-separated list of options. The all option can be used
to conveniently enable all of these options using --dev=all.

When you're enabling a debugger, the Odoo server will use pdb by default, but other
options can be used if they've been installed in your system. The supported alternatives are
as follows:

• ipdb; see https://pypi.org/project/ipdb for details.

• pudb; see https://pypi.org/project/pudb for details.

• wdb; see https://pypi.org/project/wdb for details.

https://pypi.org/project/ipdb
https://pypi.org/project/pudb
https://pypi.org/project/wdb

Learning about the available developer tools 297

When you're editing Python code, the server needs to be restarted every time the code
is changed so that the latest code is reloaded and used by Odoo. The --dev=reload
option automates this reloading. When enabled, the Odoo server detects changes that
have been made to code files and automatically triggers code reloading, making the code
changes effective immediately.

For the code reload to work, the watchdog Python package is required. It can be
installed with the following command:

(env15) $ pip3 install watchdog

The --dev=all server command option also enables reload, and it is what is used
most of the time:

(env15) $ odoo -c library.conf --dev=all

Note that this is only useful for Python code changes. For other changes, such as changing
the model's data structure, a module upgrade is needed; reloading it is not enough.

Debugging
A big part of a developer's work is debugging code. For this, it is convenient to be able to
set breakpoints and run the code step by step.

Odoo is a server that runs Python code that waits for client requests, which are processed
by the relevant server code, and then returns a response to the client. This means that
Python code debugging is done on the server side. Breakpoints are activated in the server,
pausing the server's execution on that line of code. So, the developer needs access to the
terminal window running the server both to set breakpoints and to operate the debugger
when those breakpoints are triggered.

The Python debugger
The simplest debugging tool that's available is the Python integrated debugger, pdb.
However, other options are available that provide a richer user interface, closer to what
sophisticated IDEs usually provide.

There are two ways a debugger prompt can be triggered.

One is when an unhandled exception is raised and the --dev=all option is enabled.
The debugger will stop the code's execution at the instruction causing the exception. The
developer can then inspect the variables and program state at that moment, to gain a
better understanding of what is causing it.

298 Business Logic – Supporting Business Processes

The other way is to manually set a breakpoint by editing the code and adding the
following line where the execution should pause:

import pdb; pdb.set_trace()

This does not require the –dev mode to be enabled. An Odoo server reload is needed
for the changed code to be used. When the program execution reaches the pdb.set_
trace() command, a (pdb) Python prompt will be shown in the server's terminal
window, waiting for input.

The (pdb) prompt works as a Python shell and can run any expression or command in
the current execution context. This means that the current variables can be inspected and
even modified.

A few debugger-specific commands are also available. These are the most important
commands that are available:

• h (help) displays a summary of the available pdb commands.

• p (print) evaluates and prints an expression.

• pp (pretty-print) is useful to print data structures, such as dictionaries or lists.

• l (list) lists the code around the instruction to be executed next.

• n (next) steps over to the next instruction.

• s (step) steps into the current instruction.

• c (continue) continues execution normally.

• u (up) moves up in the execution stack.

• d (down) moves down in the execution stack.

• bt (backtrace) shows the current execution stack.

The Python official documentation includes a complete description of the pdb
commands: https://docs.python.org/3/library/pdb.html#debugger-
commands.

https://docs.python.org/3/library/pdb.html#debugger-commands
https://docs.python.org/3/library/pdb.html#debugger-commands

Learning about the available developer tools 299

A sample debugging session
To understand how to use the debugger's features, let's see what a debugging session
looks like.

Start by adding a debugger breakpoint to the first line of the button_send() wizard
method, as follows:

 def button_send(self):

 import pdb; pdb.set_trace()

 self.ensure_one()

 # ...

After performing a server reload, open the Send Message wizard form and click on the
Send Messages button. This will trigger the button_send() method on the server,
which will pause at the breakpoint. The web client will stay in a Loading… state while it is
waiting for the server's response.

At that point, the terminal window where the server is running should display something
similar to this:

> /home/daniel/work15/library/library_checkout/wizard

/checkout_mass_message.py(29)button_send()

-> self.ensure_one()

(Pdb)

This is the pdb debugger prompt, and the two previous lines provide information about
where the Python code execution was paused. The first line shows the file, line number,
and function name, while the second line is the code in that line that will be run next.

Tip
During a debug session, server log messages can creep in. Most of these are
from the werkzeug module. They can be silenced by adding the --log-
handler=werkzeug:WARNING option to the Odoo command. Another
option is to lower the general log verbosity using --log-level=warn.

Typing h shows a quick reference of the available commands. Typing l shows the current
line of code and the surrounding lines of code.

Typing n runs the current line of code and moves to the next one. Pressing Enter repeats
the previous command.

300 Business Logic – Supporting Business Processes

The p debug command prints out the result of an expression, while pp does the same but
formats the output to be more readable, especially the dict and list data structures.
For example, to print the value for the checkout_ids field that's used in the wizard,
type the following:

(pdb) self.checkout_ids

library.checkout(1,)

(Pdb)

The debug prompt can run Python commands and expressions. Any Python expressions
are allowed, even variable assignments.

When you're done with a debugging session, type c to continue the normal program
execution. In some cases, you may want to interrupt the execution, and q can be used
to quit.

Tip
When you go back from the debugger to the terminal prompt, the terminal
may look unresponsive, and any typed text won't be printed to the terminal.
This can be solved by using the reset command; that is, by typing
<enter>reset<enter>.

Alternative Python debuggers
While pdb has the advantage of being available out of the box, it can be quite terse.
Fortunately, a few more comfortable options exist.

The IronPython debugger, ipdb, is a popular choice that uses the same commands as
pdb but adds improvements such as tab completion and syntax highlighting for more
comfortable usage. It can be installed with the following command:

$ pip3 install ipdb

To add a breakpoint, use the following command:

import ipdb; ipdb.set_trace()

Another alternative debugger is pudb. It also supports the same commands as pdb and
works in text terminals, but it uses a window-like graphical display. Useful information,
such as the variables in the current context and their values, is readily available on the
screen in separate windows.

Learning about the available developer tools 301

It can be installed either through the system package manager or through pip, as
shown here:

$ sudo apt-get install python-pudb # using Debian OS packages

$ pip3 install pudb # or using pip, possibly in a virtualenv

A breakpoint can be added in a way similar to pdb:

import pudb; pudb.set_trace()

A short version is also available:

import pudb; pu.db

The preceding code can be typed faster and also provides the intended effect – to add a
code execution breakpoint.

Note
Since Python 3.7, breakpoints can be simplified by using the breakpoint()
function instead of pdb.set_trace(). Debugging libraries can overwrite
the breakpoint() behavior to directly call them. However, at the time
of writing, pudb and ipdb aren't doing this, so there is no benefit to using
breakpoint() with them.

Printing messages and logging
Sometimes, we just need to inspect the values of some variables or check whether some
code blocks are being executed. A Python print() instruction can do the job perfectly
without stopping the flow of execution. Note that the printed text is sent to the standard
output and won't be stored in the server log if it is being written to a file.

The print() function is only being used as a development aid and should not make its
way to the final code, ready to be deployed. If the print statements can also help investigate
issues in a production system, consider converting them into debug-level log messages.

302 Business Logic – Supporting Business Processes

Inspecting and killing running processes
There are also a few tricks that allow us to inspect running Odoo processes.

First, find the server instance's process ID (PID). This number is printed with each log
message, right after the timestamp. Another way to find the PID is to run the following
command in another terminal window:

$ ps ax | grep odoo

Here is a sample output:

 2650 pts/5 S+ 0:00 grep --color=auto odoo

21688 pts/4 Sl+ 0:05 python3 /home/daniel/work15/env15/bin/
odoo

The first column in the output is the PID of the processes. In this example, 21688 is the
Odoo process PID.

Now that we know the process PID, signals can be sent to that Odoo server process. The
kill command is used to send these signals. By default, kill sends a signal to terminate
a process, but it can also send other, friendlier signals.

The Odoo server will print out the stack trace at the code currently being executed if it's
sent a SIGQUIT or -3 signal:

$ kill -3 <PID>

After sending SIGQUIT, the Odoo server log will display a stack trace. This can be useful
for understanding what code was being executed at that point. This information is printed
for each of the threads being used.

It is used by some code profiling approaches to track where the server is spending time
and profile the code's execution. Some useful information on code profiling is given in
the official documentation at https://www.odoo.com/documentation/15.0/
howtos/profilecode.html.

Other signals we can send to the Odoo server process include HUP, to reload the server,
and INT or TERM to force the server to shut down, as follows:

$ kill -HUP <PID>

$ kill -TERM <PID>

The HUP signal can be particularly useful for reloading the Odoo configuration without
stopping the server.

https://www.odoo.com/documentation/15.0/howtos/profilecode.html
https://www.odoo.com/documentation/15.0/howtos/profilecode.html

Summary 303

Summary
In this chapter, we explored the various features of the ORM API and how to use them
to create dynamic applications that react to users, which helps them avoid errors and
automate tedious tasks.

The model validations and computed fields can cover a lot of use cases, but not all. We
learned how to extend the API's create, write, and unlink methods to cover further use cases.

For rich user interaction, we used the mail core add-on mixins to add features for
users to communicate about documents and plan activities on them. Wizards allow the
application to dialogue with the user and gather the data that's needed to run particular
processes. Exceptions allow the application to abort incorrect operations, informing the
user of the problem and rolling back intermediate changes, keeping the system consistent.

We also discussed the tools that are available for developers to create and maintain their
applications: logging messages, debugging tools, and unit tests.

In the next chapter, we will still be working with the ORM, but we will be looking at this
from the point of view of an external application: we will be working with the Odoo server
as a backend for storing data and running business processes.

Further reading
The following are the most relevant reference materials for the topics that were discussed
in this chapter:

• ORM reference: https://www.odoo.com/documentation/15.0/
developer/reference/backend/orm.html

• Message and activities features: https://www.odoo.com/
documentation/15.0/developer/reference/backend/mixins.html

• Odoo tests reference: https://www.odoo.com/documentation/15.0/
developer/reference/backend/testing.html

• Python unittest reference: https://docs.python.org/3/library/
unittest.html#module-unittest

https://www.odoo.com/documentation/15.0/developer/reference/backend/orm.html
https://www.odoo.com/documentation/15.0/developer/reference/backend/orm.html
https://www.odoo.com/documentation/15.0/developer/reference/backend/mixins.html
https://www.odoo.com/documentation/15.0/developer/reference/backend/mixins.html
https://www.odoo.com/documentation/15.0/developer/reference/backend/testing.html
https://www.odoo.com/documentation/15.0/developer/reference/backend/testing.html
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#module-unittest

9
External API –

Integrating with
Other Systems

The Odoo server provides an external API that's used by its web client and is also available
for other client applications. In this chapter, we'll learn how to use the Odoo external
API to implement external applications that interact with an Odoo server by using it as
a backend.

This can be used to write scripts to load or modify Odoo data, or to integrate with an
Odoo existing business application, which is complementary and can't be replaced by an
Odoo app.

We'll describe how to use OdooRPC calls, and then use that knowledge to build a simple
command-line application for the Library Odoo app using Python.

The following topics will be covered in this chapter:

• Introducing the learning project – a client app to catalog books

• Setting up Python on the client machine

• Exploring the Odoo external API

306 External API – Integrating with Other Systems

• Implementing the client app's XML-RPC interface

• Implementing the client app's user interface

• Using the OdooRPC library

By the end of this chapter, you should have created a simple Python application that can
use Odoo as a backend to query and store data.

Technical requirements
The code in this chapter requires the library_app Odoo module that we created in
Chapter 3, Your First Odoo Application. The corresponding code can be found in this
book's GitHub repository at https://github.com/PacktPublishing/Odoo-15-
Development-Essentials.

The path to the Git clone repository should be in the Odoo add-ons path and the
library_app module should be installed. The code examples will assume that the
Odoo database you're working with is library, to be consistent with the installation
instructions provided in Chapter 2, Preparing the Development Environment.

The code in this chapter can be found in the same repository, in the ch09/client_
app/ directory.

Introducing the learning project – a client app
to catalog books
In this chapter, we will work on a simple client application to manage the library book
catalog. It is a command-line interface (CLI) application that uses Odoo as its backend.
The features that we will implement will be basic to keep the focus on the technology
that's used to interact with the Odoo server.

This simple CLI application should be able to do the following:

• Search for and list books by title.

• Add new books to the catalog.

• Edit a book title.

https://github.com/PacktPublishing/Odoo-15-Development-Essentials
https://github.com/PacktPublishing/Odoo-15-Development-Essentials

Setting up Python on the client machine 307

The goal is to focus on how to use the Odoo external API, so we want to avoid introducing
additional programming languages that you might not be familiar with. By introducing
this constraint, the most sensible choice is to use Python to implement the client app. Still,
once we understand the XML-RPC library for a particular language, the techniques to
handle the RPC calls will also apply.

The application will be a Python script that expects specific commands to perform. Here is
an example:

$ python3 library.py add "Moby-Dick"

$ python3 library.py list "moby"

3 Moby-Dick

$ python3 library.py set-title 3 "Moby Dick"

This example session demonstrates the client app being used to add, list, and modify
book titles.

This client app will run using Python. Before we start looking at the code for the client
app, we must make sure that Python is installed in the client machine.

Setting up Python on the client machine
The Odoo API can be accessed externally using two different protocols: XML-RPC and
JSON-RPC. Any external program capable of implementing a client for one of these
protocols will be able to interact with an Odoo server. To avoid introducing additional
programming languages, we will use Python to explore the external API.

Until now, Python code was only being used on the server side. For the client app, Python
code will run on the client, so the workstation may require additional setup.

To follow the examples in this chapter, the system you're using needs to be able to run
Python 3 code. If you've followed the same development environment that's been used
for the other chapters in this book, this might already be the case. However, if it isn't, we
should make sure that Python is installed.

To make sure that Python 3 is installed in the development workstation, run the python3
--version command in a terminal window. If it is not installed, please refer to the
official page to find the installation package for your system, at https://www.python.
org/downloads/.

https://www.python.org/downloads/
https://www.python.org/downloads/

308 External API – Integrating with Other Systems

With Ubuntu, there's a good chance it is preinstalled on your system. If not, it can be
installed with the following command:

$ sudo apt-get install python3 python3-pip

For Windows 10, it can be installed from the Microsoft Store.

Running python3 in PowerShell will direct you to the corresponding download page.

If you are a Windows user and have installed Odoo with the all-in-one installer, you
may be wondering why the Python interpreter is not already available for you. In this
case, you'll need an additional installation. The short answer is that the Odoo all-in-one
installer has an embedded Python interpreter that is not directly made available to the
general system.

Now that Python has been installed and is available, it can be used to explore the Odoo
external API.

Exploring the Odoo external API
Some familiarity with the Odoo external API should be gained before we implement the
client app. The following sections explore the XML-RPC API using a Python interpreter.

Using XML-RPC to connect to the Odoo external API
The simplest way to access the Odoo server is by using XML-RPC. The xmlrpc library,
from Python standard library, can be used for this.

Remember that the application being developed is a client that connects to a server. So,
a running Odoo server instance is needed for the client to connect to. The code examples
will assume that an Odoo server instance is running on the same machine, http://
localhost:8069, but any reachable URL can be used if the server you wish to use is
running on a different machine.

The Odoo xmlrpc/2/common endpoint exposes public methods, and these can
be accessed without a login. These can be used to inspect the server version and check
login credentials. Let's use the xmlrpc library to explore the common publicly available
Odoo API.

First, start a Python 3 console and type the following:

>>> from xmlrpc import client

>>> srv = "http://localhost:8069"

>>> common = client.ServerProxy("%s/xmlrpc/2/common" % srv)

Exploring the Odoo external API 309

>>> common.version()

{'server_version': '15.0', 'server_version_info': [15, 0, 0,
'final', 0, ''], 'server_serie': '15.0', 'protocol_version': 1}

The preceding code imports the xmlrpc library and sets up a variable with the server
address and listening port. This can be adapted to the specific URL of the Odoo server to
connect to.

Next, an XML-RPC client object is created to access the server public services that are
exposed at the /xmlrpc/2/common endpoint. You do not need to log in. One of the
methods available there is version(), which is used to inspect the Odoo server version.
It is a simple way to confirm that communication with the server is working.

Another useful public method is authenticate(). This method confirms that the
username and password are accepted and returns the user ID that should be used in
requests. Here is an example:

>>> db, user, password = "library", "admin", "admin"

>>> uid = common.authenticate(db, user, password, {})

>>> print(uid)

2

The authenticate() method expects four parameters: the database name, the
username, the password, and the user agent. The previous code used variables to store
these and then passed those variables as parameters.

Changes in Odoo 14
Odoo 14 supports API keys, and this may be required for Odoo API
external access. API keys can be set on the user's Preferences form, in
the Account Security tab. The XML-RPC usage is the same, except that
the API key should be used as the password. More details are provided
in the official documentation at https://www.odoo.com/
documentation/15.0/developer/misc/api/odoo.
html#api-keys.

The user agent environment should be used to provide some metadata about the client.
It's mandatory, and should at least be an empty dictionary, {}.

If the authentication fails, a False value will be returned.

The common public endpoint is quite limited, so to gain access to the ORM API or
another endpoint, the required authentication needs to be used.

https://www.odoo.com/documentation/15.0/developer/misc/api/odoo.html#api-keys
https://www.odoo.com/documentation/15.0/developer/misc/api/odoo.html#api-keys
https://www.odoo.com/documentation/15.0/developer/misc/api/odoo.html#api-keys

310 External API – Integrating with Other Systems

Using XML-RPC to run server methods
To access the Odoo models and their methods, the xmlrpc/2/object endpoint needs
to be used. The requests to this endpoint require login details.

This endpoint exposes a generic execute_kw method and receives the model's name,
the method to call, and a list containing the parameters to pass to that method.

Here is an example of how execute_kw works. It calls the search_count method,
which returns the number of records that match a domain filter:

>>> api = xmlrpc.client.ServerProxy('%s/xmlrpc/2/object' % srv)

>>> api.execute_kw(db, uid, password, "res.users", "search_
count", [[]])

3

This code uses the xmlrpc/2/endpoint object to access the server API. The
execute_kw() method is called using the following arguments:

• The name of the database to connect to

• The connection user ID

• The user password (or API key)

• The target model identifier

• The method to call

• A list of positional arguments

• An optional dictionary with keyword arguments (not used in this example)

All the model methods can be called, except for the ones prefixed with an underscore (_),
which are considered private. Some methods might not work with the XML-RPC protocol
if they return values that can't be sent through the XML-RPC protocol. This is the case
for browse(), which returns a recordset object. Trying to use browse() through
XML-RPC returns a TypeError: cannot marshal objects error. Instead of
browse(), XML-RPC calls should use read or search_read, which return data in a
format the XML-RPC protocol can send to the client.

Now, let's see how search and read can be used to query Odoo data.

Exploring the Odoo external API 311

Using the search and read API methods
The Odoo server-side code uses browse to query records. This can't be used by RPC
clients because the recordset objects can't be transported through the RPC protocol.
Instead, the read method should be used.

read([<ids>, [<fields>]) is similar to the browse method, but instead of a
recordset, it returns a list of records. Each record is a dictionary that contains the fields
that have been requested and their data.

Let's see how read() can be used to retrieve data from Odoo:

>>> api = xmlrpc.client.ServerProxy("%s/xmlrpc/2/object" % srv)

>>> api.execute_kw(db, uid, password, "res.users", "read", [2,
["login", "name", "company_id"]])

[{'id': 2, 'login': 'admin', 'name': 'Mitchell Admin',
'company_id': [1, 'YourCompany']}]

The preceding example calls the read method of the res.users model with two
positional arguments – the record ID 2 (a list of IDs could have been used instead) and
the list of fields to retrieve, ["login", "name", "company_id"], and no keyword
arguments.

The result is a list of dictionaries, where each dictionary is a record. The values of to-many
fields follow a particular representation. They are a pair of values with the record ID
and the record display name. For example, the company_id value that was returned
previously was [1, 'YourCompany'].

The record IDs may not be known, and in that case, a search call is needed to find the
record IDs that match a domain filter.

For example, if we wish to find the admin user, we can use [("login", "=",
"admin")]. This RPC call is shown here:

>>> domain = [("login", "=", "admin")]

>>> api.execute_kw(db, uid, password, "res.users", "search",
[domain])

[2]

The result is a list with only one element, 2, which is the ID of the admin user.

A frequent action would be to use combinations of the search and read methods to
find the ID for the records meeting a domain filter and then retrieve the data for them. For
a client app, this means two round trips to the server. To simplify this, the search_read
method is available, which can perform both operations in a single step.

312 External API – Integrating with Other Systems

Here is an example of search_read being used to find the admin user and return
its name:

>>> api.execute_kw(db, uid, password, "res.users", "search_
read", [domain, ["login", "name"]])

[{'id': 2, 'login': 'admin', 'name': 'Mitchell Admin'}]

The search_read method is using two positional arguments: a list containing the
domain filter, and a second list containing the fields to retrieve.

The arguments for search_read are as follows:

• domain: A list with a domain filter expression

• fields: A list with the names of the fields to retrieve

• offset: The number of records to skip or use for record pagination

• limit: The maximum number of records to return

• order: A string to be used by the database's ORDER BY clause

The fields argument is optional, both for read and search_read. If it's not
provided, all the model fields will be retrieved. But this may cause expensive function field
computation and a large amount of data being retrieved that is probably not needed. So,
the recommendation is to provide an explicit list of fields.

The execute_kw call can use both positional and keyword arguments. Here is what the
same call looks like when you're using keyword arguments instead of positional ones:

>>> api.execute_kw(db, uid, password, "res.users", "search_
read", [], {"domain": domain, "fields": ["login", "name"]})

search_read is the most used method to retrieve data, but there are more methods
available to write data or trigger other business logic.

Calling other API methods
All the other model methods are exposed through RPC, except for the ones prefixed
with an underscore, which are considered private. This means that create, write, and
unlink can be called to modify data on the server.

Exploring the Odoo external API 313

Let's look at an example. The following code creates a new partner record, modifies it,
reads it to confirm the modification was written, and finally deletes it:

>>> x = api.execute_kw(db, uid, password, "res.partner",
"create",

[{'name': 'Packt Pub'}])

>>> print(x)

49

>>> api.execute_kw(db, uid, password, "res.partner", "write",

[[x], {'name': 'Packt Publishing'}])

True

>>> api.execute_kw(db, uid, password, "res.partner", "read",

[[x], ["name"]])

[{'id': 49, 'name': 'Packt Publishing'}]

>>> api.execute_kw(db, uid, password, "res.partner", "unlink",
[[x]])

True

>>> api.execute_kw(db, uid, password, "res.partner", "read",
[[x]])

[]

One limitation of the XML-RPC protocol is that it doesn't support None values. There's
an XML-RPC extension that supports None values, but whether this is available will
depend on the particular XML-RPC library being used by the client app. Methods that
don't return anything may not be usable through XML-RPC, since they are implicitly
returning None. This is why it is good practice for methods to always return something,
at a True value. Another alternative is to use JSON-RPC instead. The OdooRPC library
supports this protocol, and it will be used later in this chapter, in the Using the OdooRPC
library section.

The Model methods that are prefixed with an underscore are considered private and
aren't exposed through XML-RPC.

Tip
Often, client apps want to replicate manual user entry on an Odoo form.
Calling the create() method might not be enough for this, because forms
can automate some fields using onchange methods, which are triggered
by the form's interaction, but not by create(). The solution is to create a
custom method on the Odoo server, that uses create() and then runs the
needed onchange methods.

314 External API – Integrating with Other Systems

It is worth repeating that the Odoo external API can be used by most programming
languages. The official documentation provides examples for Ruby, PHP, and Java. This
is available at https://www.odoo.com/documentation/15.0/webservices/
odoo.html.

So far, we've seen how to call Odoo methods using the XML-RPC protocol. Now, we can
use this to build the book catalog client application.

Implementing the client app XML-RPC
interface
Let's start by implementing the Library book catalog client application.

This can be split into two files: one for the Odoo backend interface containing the server
backend, library_xmlrpc.py, and another for the user interface, library.py. This
will allow us to use alternative implementations for the backend interface.

Starting with the Odoo backend component, a LibraryAPI class will be used to set up
the connection with the Odoo server that supports methods that are needed to interact
with Odoo. The methods to implement are as follows:

• search_read(<title>) to search for book data by title

• create(<title>) to create a book with a specific title

• write(<id>, <title>) to update a book title using the book ID

• unlink(<id>) to delete a book using its ID

Choose a directory to host the application files in and create the library_xmlrpc.py
file. Start by adding the class constructor, as follows:

import xmlrpc.client

class LibraryAPI():

 def __init__(self, host, port, db, user, pwd):

 common = xmlrpc.client.ServerProxy(

 "http://%s:%d/xmlrpc/2/common" % (host, port))

 self.api = xmlrpc.client.ServerProxy(

 "http://%s:%d/xmlrpc/2/object" % (host, port))

 self.uid = common.authenticate(db, user, pwd, {})

https://www.odoo.com/documentation/15.0/webservices/odoo.html
https://www.odoo.com/documentation/15.0/webservices/odoo.html

Implementing the client app XML-RPC interface 315

 self.pwd = pwd

 self.db = db

 self.model = "library.book"

This class stores all of the information needed to execute calls on the target model: the API
XML-RPC reference, uid, the password, the database name, and the model name.

The RPC calls to Odoo will all use the same execute_kw RPC method. A thin wrapper
around it is added next, in the _execute() private method. This takes advantage of the
object stored data to provide a smaller function signature, as shown in the following code
block:

 def _execute(self, method, arg_list, kwarg_dict=None):

 return self.api.execute_kw(

 self.db, self.uid, self.pwd, self.model,

 method, arg_list, kwarg_dict or {})

This _execute() private method can now be used for less verbose implementations of
the higher-level methods.

The first public method is the search_read() method. It will accept an optional string
that's used to search book titles. If no title is given, all the records will be returned. This is
the corresponding implementation:

 def search_read(self, title=None):

 domain = [("name", "ilike", title)] if title else

 []

 fields = ["id", "name"]

 return self._execute("search_read", [domain,

 fields])

The create() method will create a new book with the given title and return the ID of
the created record:

 def create(self, title):

 vals = {"name": title}

 return self._execute("create", [vals])

316 External API – Integrating with Other Systems

The write() method will have the new title and book ID as arguments and will perform
a write operation on that book:

 def write(self, id, title):

 vals = {"name": title}

 return self._execute("write", [[id], vals])

Finally, the unlink() method is used to delete a book, given the corresponding ID:

 def unlink(self, id):

 return self._execute("unlink", [[id]])

We end the file with a small piece of test code that will be executed if we run the Python
file, which can help test the methods that have been implemented, as shown here:

if __name__ == "__main__":

 # Sample test configurations

 host, port, db = "localhost", 8069, "library"

 user, pwd = "admin", "admin"

 api = LibraryAPI(host, port, db, user, pwd)

 from pprint import pprint

 pprint(api.search_read())

If we run this Python script, we should see the content of our library books printed out:

$ python3 library_xmlrpc.py

[{'id': 1, 'name': 'Odoo Development Essentials 11'},

 {'id': 2, 'name': 'Odoo 11 Development Cookbook'},

 {'id': 3, 'name': 'Brave New World'}]

Now that we have a simple wrapper around our Odoo backend, let's deal with the
command-line user interface.

Implementing the client app user interface
Our goal here was to learn how to write the interface between an external application and
the Odoo server, and we did this in the previous section. But let's go the extra mile and
build the user interface for this minimalistic client application.

Implementing the client app user interface 317

To keep this as simple as possible, we will use a simple command-line user interface and
additional dependencies will be avoided. This leaves us with Python's built-in features to
implement command-line applications and the ArgumentParser library.

Now, alongside the library_xmlrpc.py file, create a new library.py file. This will
import Python's command-line argument parser and then the LibraryAPI class, as
shown in the following code:

from argparse import ArgumentParser

from library_xmlrpc import LibraryAPI

Next, we must describe the commands that the argument parser will expect. There are
four commands:

• list to search for and list books

• add to add a book

• set to update a book title

• del to delete a book

The command-line parser code for implementing the preceding commands is shown here:

parser = ArgumentParser()

parser.add_argument(

 "command",

 choices=["list", "add", "set", "del"])

parser.add_argument("params", nargs="*") # optional args

args = parser.parse_args()

The args object represents the command-line options given by the user. args.
command is the command being used, while args.params holds the additional
parameters to use for the command, if they've been given any.

If no or incorrect commands are given, the argument parser will handle that and will show
the user what input is expected. A complete reference to argparse can be found in the
official documentation at https://docs.python.org/3/library/argparse.
html.

https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html

318 External API – Integrating with Other Systems

The next step is to perform the action that corresponds to the user command. We will
start by creating a LibraryAPI instance. This requires Odoo connection details that, in
this simple implementation, will be hardcoded, as shown here:

host, port, db = "localhost", 8069, "library"

user, pwd = "admin", "admin"

api = LibraryAPI(host, port, db, user, pwd)

The first line sets some fixed parameters for the server instance and database to connect
to. In this case, the connection is to a local Odoo server, listening on the 8069 default
port, to a library database. To connect to a different server and database, these
parameters should be adapted accordingly.

New specific code to handle each command must be added. We will start with the list
command, which returns a list of books:

if args.command == "list":

 title = args.params[:1]

 books = api.search_read(title)

 for book in books:

 print("%(id)d %(name)s" % book)

The LibraryAPI.search_read() method is being used in the preceding code
to retrieve the list of book records. The returned list is then iterated to print out each
element.

Next is the add command:

if args.command == "add":

 title = args.params[0]

 book_id = api.create(title)

 print("Book added with ID %d for title %s." % (

 book_id, title))

Since the hard work was already done in the LibraryAPI object, the implementation
just needs to call the create() method and show the result to the end user.

Using the OdooRPC library 319

The set command allows us to change the title of an existing book. It should have two
parameters – the ID of the book and the new title:

if args.command == "set":

 if len(args.params) != 2:

 print("set command requires a Title and ID.")

 else:

 book_id, title = int(args.params[0]),

 args.params[1]

 api.write(book_id, title)

 print("Title of Book ID %d set to %s." % (book_id,

 title))

Finally, there is the implementation for the del command, to delete a book record. This is
not very different from the previous commands:

if args.command == "del":

 book_id = int(args.params[0])

 api.unlink(book_id)

 print("Book with ID %s was deleted." % book_id)

The client application is done, and you can try it out using the commands of your choice.
In particular, we should be able to run the example commands shown at the beginning of
this chapter.

Tip
On a Linux system, library.py can be made executable by running the
chmod +x library.py command and adding #!/usr/bin/env
python3 to the first line of the file. After this, running ./library.py in
the command line should work.

This is quite a basic application, and it is easy to think of a few ways to improve it. The
point here was to build a minimum viable application using the Odoo RPC API.

Using the OdooRPC library
Another relevant client library to be considered is OdooRPC. It is a complete client library
that uses the JSON-RPC protocol instead of XML-RPC. The Odoo official web client uses
JSON-RPC as well, although XML-RPC is still also supported.

320 External API – Integrating with Other Systems

The OdooRPC library is now maintained under the Odoo Community Association
umbrella. The source code repository can be found at https://github.com/OCA/
odoorpc.

The OdooRPC library can be installed from PyPI using the following command:

$ pip3 install odoorpc

The OdooRPC library sets up a server connection when a new odoorpc.ODOO object is
created. At this point, we should use the ODOO.login() method to create a user session.
Just like on the server side, the session has an env attribute containing the session's
environment, including the user ID, uid, and context.

The OdooRPC library can be used to provide an alternate implementation for the
library_xmlrpc.py interface with the server. It should provide the same features but
be implemented using JSON-RPC instead of XML-RPC.

To achieve this, a library_odoorpc.py Python module will be created that provides
a drop-in replacement for the library_xmlrpc.py module. To do this, create a new
library_odoorpc.py file alongside it that contains the following code:

import odoorpc

class LibraryAPI():

 def __init__(self, host, port, db, user, pwd):

 self.api = odoorpc.ODOO(host, port=port)

 self.api.login(db, user, pwd)

 self.uid = self.api.env.uid

 self.model = "library.book"

 self.Model = self.api.env[self.model]

 def _execute(self, method, arg_list, kwarg_dict=None):

 return self.api.execute(

 self.model,

 method, *arg_list, **kwarg_dict)

https://github.com/OCA/odoorpc
https://github.com/OCA/odoorpc

Using the OdooRPC library 321

The OdooRPC library implements the Model and Recordset objects, which mimic the
behavior of their server-side counterparts. The goal is for the code that's using this library
to be similar to the code that's used on the Odoo server side. The methods that are used
by the client make use of this and store a reference to the library.book model object
in the self.Model attribute, which is provided by the OdooRPC env["library.
book"] call.

The _execute() method is implemented here as well; it allows us to compare it to
the plain XML-RPC version. The OdooRPC library has the execute() method to run
arbitrary Odoo model methods.

Next is the implementation for the search_read(), create(), write(),
and unlink() client methods. In the same file, add these methods inside the
LibraryAPI() class:

 def search_read(self, title=None):

 domain = [("name", "ilike", title)] if title else

 []

 fields = ["id", "name"]

 return self.Model.search_read(domain, fields)

 def create(self, title):

 vals = {"name": title}

 return self.Model.create(vals)

 def write(self, id, title):

 vals = {"name": title}

 self.Model.write(id, vals)

 def unlink(self, id):

 return self.Model.unlink(id)

Notice how this client code is similar to the Odoo server-side code.

This LibraryAPI object can be used as a drop-in replacement for library_xmlrpc.
py. It can be used as the RPC connection layer by editing the library.py file and
changing the from library_xmlrpc import LibraryAPI line to from
library_odoorpc import LibraryAPI. Now, test drive the library.py client
application; it should perform just like before!

322 External API – Integrating with Other Systems

Summary
The goal of this chapter was to learn how the external API works and what it is capable
of. We started by exploring it with simple scripts using the Python XML-RPC client,
though the external API can be used from any programming language. The official
documentation provides code examples for Java, PHP, and Ruby.

Then, we learned how to use XML-RPC calls to search for and read data, and then how to
call any other method. We can, for example, create, update, and delete records.

Next, we introduced the OdooRPC library. It provides a layer on top of the RPC base
library (XML-RPC or JSON-RPC) to provide a local API that's similar to the API that
can be found on the server side. This lowers the learning curve, reduces programming
mistakes, and makes it easier to copy code between server and client code.

With this, we have finished the chapters dedicated to the programming API and business
logic. Now, it's time to look at views and the user interface. In the next chapter, we will
look at backend views in more detail and the user experience that can be provided out of
the box by the web client.

Further reading
The following additional reference material may complement the topics described in
this chapter:

• The official documentation on Odoo web services, including code examples
for programming languages other than Python: https://www.odoo.com/
documentation/15.0/developer/misc/api/odoo.html

• The OdooRPC documentation: https://pythonhosted.org/OdooRPC

https://www.odoo.com/documentation/15.0/developer/misc/api/odoo.html
https://www.odoo.com/documentation/15.0/developer/misc/api/odoo.html
https://pythonhosted.org/OdooRPC

Next is the view layer. We will discuss in detail the graphical user interface (GUI) using
the models and business logic. The Odoo web client provides a rich set of components to
design the GUI, but a web development framework is also available for flexible website
development. QWeb templates play a big role in advanced web client views, reports, and
website pages, and are introduced here.

In this section, the following chapters are included:

• Chapter 10, Backend Views – Designing the User Interface

• Chapter 11, Kanban Views and Client-Side QWeb

• Chapter 12, Creating Printable PDF Reports with Server-Side QWeb

• Chapter 13, Creating Web and Portal Frontend Features

Section 4:
Views

10
Backend Views –

Designing
the User Interface

This chapter describes how to create views to implement the user interface for business
applications. The Odoo user interface starts with the menu items and various actions
being executed on menu clicks, so these are the first components we will learn about.

The most used view type is the form view, and there are a few elements we must learn
about, from organizing the disposition of the elements in the view to understanding all
the options that are available for fields and buttons.

Some other frequently used views include list views and search views. Finally, other view
types are available that are useful for specific purposes, such as the pivot and graph views.
An overview of these will be provided toward the end of this chapter.

326 Backend Views – Designing the User Interface

The following topics will be covered in this chapter:

• Adding menu items

• Understanding window actions

• Exploring the form view's structure

• Using fields

• Using buttons

• Adding dynamic view elements

• Exploring list views

• Exploring search views

• Understanding the other available view types

By the end of this chapter, you should be familiar with all the Odoo view types and have
the resources to use them. In particular, you will be confident with designing non-trivial
form views and providing an adequate user experience.

Technical requirements
We'll continue working with the library_checkout add-on module. The model layer
for it is already complete; now, it needs the view layer for the user interface.

The code in this chapter is based on the code that we created in Chapter 8, Business
Logic – Supporting Business Processes. The necessary code can be found in this book's
GitHub repository at https://github.com/PacktPublishing/Odoo-15-
Development-Essentials, in the ch10 directory.

Adding menu items
Menu items are the starting point for user interface navigation. They form a hierarchical
structure, where the top-level items represent applications, and the level below is the
application main menu. Further sub-menu levels can be added.

Menu items with no sub-menus are actionable and can trigger an action that tells the web
client what to do, such as opening a view.

Menu items are stored in the ir.ui.menu model and can be browsed via the Settings |
Technical | User Interface | Menu Items menu.

https://github.com/PacktPublishing/Odoo-15-Development-Essentials
https://github.com/PacktPublishing/Odoo-15-Development-Essentials

Adding menu items 327

The library_app add-on module created a top-level menu for the library books, while
the library_checkout add-on module added the menu items for the checkouts
and checkout stages. These are both implemented in library_checkout/views/
library_menu.xml.

This is the XML for the checkout menu item:

 <menuitem id="menu_library_checkout"

 name="Checkout"

 action="action_library_checkout"

 parent="library_app.library_menu"

 />

The preceding code uses a <menuitem> shortcut element, which is an abbreviated
way to create a menu record that's more convenient than a <record model="ir.
ui.menu"> element.

The most used <menuitem> attributes are as follows:

• name is the menu item's title and is present in the user interface.

• action is the XML ID of the action to run when clicking on the menu item.

• parent is the XML ID of the parent menu item. In this case, the parent was created
in another module, so it needs to be referenced using the complete XML ID; that is,
<module>.<XML ID>.

Some other attributes are also available:

• sequence sets a number to order the presentation of the menu items; for example,
sequence="10".

• groups is a comma-separated list of XML IDs of the security groups that have
access to the menu item; for example, groups="library_app.library_
group_user,library_app.library_group_manager".

• web_icon is the path to the icon to use. It's only relevant for top-level menu items
in the enterprise edition. The path value should follow the web_icon="library_
app,static/description/icon.png" format.

Menu items can run an action, as identified by the action attribute, and in most cases,
this will be a window action. The next section will explain how to create actions and what
they are capable of.

328 Backend Views – Designing the User Interface

Understanding window actions
A window action on a menu gives the web client instructions on what to do, such as
opening a view, and can be used in menu items or buttons in views.

Window actions identify the model to use and the views to present in the user interface.
They can also filter the available records using a domain filter and can set default values
and filters using the context attribute.

Window actions are stored in the ir.actions.act_window model and can be
browsed by going to the Settings | Technical | Actions | Window Actions menu.

The library_checkout/views/library_menu.xml file contains the definition
for the window action that's used by the checkout menu item:

 <record id="action_library_checkout"

 model="ir.actions.act_window">

 <field name="name">Checkouts</field>

 <field name="res_model">library.checkout</field>

 <field name="view_mode">tree,form</field>

 </record>

A window action is an ir.actions.act_window record. The most important fields
are as follows:

• name is the title that will be displayed on the view that's opened through the action.

• res_model is the identifier of the target model.

• view_mode is a comma-separated list of the view types to make available. The first
in the list is the one to open by default.

The other relevant window actions fields are as follows:

• target defaults to current and opens the view inline in the main content area.
If it's set to new, it will open the view in a pop-up dialog window; for example,
target="new".

• context sets context information on the target views, which can set
default values or activate filters, among other things; for example, <field
name="context">{'default_user_id': uid}</field>.

Understanding window actions 329

• domain is a domain expression that forces a filter for the records that can be
browsed in the opened views; for example, domain="[('user_id', '=',
uid)]".

• limit is the number of records for each page in the list view; for example,
limit="80".

• view_id is a reference to a particular view to be used. It can't be used together
with view_mode. It is often used together with target="new", to open a
particular form as a popup.

Changes in Odoo 13
Until Odoo 12, the <act_window> shortcut element could be used to
create window actions. This was removed in Odoo 13. Now, window actions
must be created using a <record model="ir.actions.act_
window"> element.

In this chapter, we will add view types for the library.checkout model. By doing so,
we will showcase the other available view types, other than form and tree/list views.

The view types to be made available must be indicated by the window action. So, let's
edit the library_checkout/views/library_menu.xml file to add the new view
types, as highlighted in the following code:

 <record id="action_library_checkout"

 model="ir.actions.act_window">

 <field name="name">Checkouts</field>

 <field name="res_model">library.checkout</field>

 <field name="view_mode"

 >tree,form,activity, calendar,graph,pivot</field>

 </record>

These changes can't be made yet. The definitions of the corresponding view types should
be implemented before they are added to the window action's view_mode.

Other than the menu items or view buttons, actions can also be used in the Action context
menu, which is available near the search box. The next section explains this in detail.

330 Backend Views – Designing the User Interface

Adding options to the Action context menu
Window actions can also be used from the Action menu button, available at the top of
form views, and also in list views when records are selected:

Figure 10.1 – The Action context menu

This menu is contextual because the action will apply to the record or records currently
selected.

To have an action available in the Action menu, two more fields have to be set on the
window action:

• binding_model_id is a reference to the model to use the action for; for
example, <field name="binding_model_id" ref="model_library_
checkout" />.

• binding_view_types can be used to limit the option's visibility to specific view
types, such as form or list; for example, <field name="binding_view_
types">form,list</field>.

An example of this has already been implemented in the library_checkout module,
in the wizard/checkout_mass_message_wizard_view.xml file. This has been
copied here for reference:

 <record id="action_checkout_message"

 model="ir.actions.act_window">

 <field name="name">Send Messages</field>

 <field name="res_model">

 library.checkout.massmessage</field>

 <field name="view_mode">form</field>

 <field name="binding_model_id"

 ref="model_library_checkout" />

Adding options to the Action context menu 331

 <field name="binding_view_types">form,list</field>

 <field name="target">new</field>

 </record>

The settings that are related to binding to the Action menu are highlighted in the
previous code.

The following screenshot illustrates the corresponding action menu item:

Figure 10.2 – The Send Message action menu options

Changes in Odoo 13
The action binding fields were changed in Odoo 13. Until Odoo 12,
src_model set the binding and used the model identifier, library.
checkout, for example. It is available in the form view, and it can also be
made available in the list view by setting multi to true.

Once a window action has been triggered, the corresponding views are opened. The most
used view types are form and list. The next section details how to create form views.

332 Backend Views – Designing the User Interface

Exploring the form view structure
Form views are the main way users can interact with data records. Form views can either
follow a simple layout or a business document layout, similar to a paper document. In
this section, we'll learn how to design these business document views and how to use the
elements and widgets that are available.

In Chapter 8, Business Logic – Supporting Business Processes, we created a library checkout
model and prepared a basic form for it. We will revisit and enhance it in this section.

The following screenshot shows what the form view will look like when we're done:

Figure 10.3 – The enhanced Checkouts form view

You can refer to this screenshot while we gradually add the different elements throughout
this chapter.

Exploring the form view structure 333

Using business document views
Historically, organizations use paper forms to support their internal processes. Business
application models support digital versions of these paper forms, and in the process, they
can add automation and make operations more efficient.

For a more intuitive user interface, form views can mimic these paper documents, helping
users to visualize processes they are used to running on paper forms.

For example, for the Library app, book checkouts are probably a process where a paper
form has to be filled in. It is probably a good idea to let the checkout form have a layout
that looks like a paper document.

A business document is a form that contains two elements: a <head> section and a
<sheet> section. head contains buttons and widgets to control the document's business
workflow, while sheet contains the actual document content. After the sheet section,
we can also have the message and activity widgets.

To add this structure to the checkout form, start by editing the library_checkout/
views/checkout_view.xml file and changing the form view record to the following
basic skeleton:

<record id="view_form_checkout" model="ir.ui.view">

 <field name="model">library.checkout</field>

 <field name="arch" type="xml">

 <form>

 <header>

 <!-- To add buttons and status widget -->

 </header>

 <sheet>

 <!-- To add form content -->

 </sheet>

 <!-- Discuss widgets -->

 <div class="oe_chatter">

 <field name="message_follower_ids"

 widget="mail_followers" />

 <field name="activity_ids"

334 Backend Views – Designing the User Interface

 widget="mail_activity" />

 <field name="message_ids"

 widget="mail_thread" />

 </div>

 </form>

 </field>

</record>

The view name is optional and automatically generated if it's missing. So, for simplicity,
the <field name="name"> element was omitted from the preceding view record.

The <head> and <sheet> sections are empty for now, and will be expanded next.

The messaging section at the bottom uses the widgets provided by the mail add-on
module, as explained in Chapter 8, Business Logic – Supporting Business Processes.

The first section to check is the form header.

Adding a header section
The header at the top usually features the steps that the document will move through in
its life cycle and the related action buttons. These action buttons are regular form buttons,
and the button for moving on will usually be highlighted, to help the user.

Adding header buttons
Let's start by adding a button to the currently empty header section.

While editing the <header> section in the form view, add a button to move a checkout
to the done state:

<header>

 <field name="state" invisible="True" />

 <button name="button_done"

 type="object"

 string="Return Books"

 attrs="{'invisible':

 [('state', 'in', ['new', 'done', 'cancel'])]}"

 class="oe_highlight"

 />

</header>

Exploring the form view structure 335

By using the preceding code, the Return Books button is added to the header with
type="object", meaning that a model method is called. name="button_done"
declares the method name to call.

class="oe_highlight" is used to highlight the button. When we have several
buttons to choose from, the main or more usual course of action can be highlighted to
help users.

The attrs attribute is used to have the button visible only in the states where it makes
sense. It should be visible in the open state, so it should be set to invisible for the
new, done, and cancel states.

The condition to do this uses the state field, which otherwise is not used on the form.
For the attrs condition to work, the state field needs to be loaded into the web client.
To ensure this, it was added as an invisible field.

In this particular case, the special state field name is being used, and the visibility
condition to be implemented with attrs can be achieved with the simpler states
attribute. The states attribute lists the states where the element will be visible.

By using states instead of attrs, the button will only be visible in the open state and
will look like this:

 <button name="button_done"

 type="object"

 string="Return Books"

 states="open"

 class="oe_highlight"

 />

The attrs and states element visibility features can also be used on other view
elements, such as fields. We'll explore them in more detail later in this chapter.

For this button to work, the method that's being called must be implemented. For this, in
the library_checkout/models/library_checkout.py file, add the following
code to the checkout class:

 def button_done(self):

 Stage = self.env["library.checkout.stage"]

 done_stage = Stage.search([("state", "=", "done")],

 limit=1)

 for checkout in self:

 checkout.stage_id = done_stage

 return True

336 Backend Views – Designing the User Interface

First, the code looks up Stages to find the first record that matches the done state. It will
be used to set the records to that stage.

The self recordset will usually be a single record, but the API allows it to be called for
a multi-record recordset, so this possibility should be addressed. This can be done with
a for loop on self. Then, for each record in the self recordset, the stage_id field
must be set to the done stage.

Alongside the buttons, the header can feature a status bar widget to present the available
stages or states.

Adding a status bar pipeline
Another helpful element in the header is a pipeline diagram presenting the process steps
and where the current document is at. This can be based either on a stages or a states list.
This pipeline widget can be clickable or not, in case we want the changes to only be made
through buttons.

The status bar widget is added with a <field> element using the statusbar widget.
The checkout model has the stage_id field that we will use:

<header>

 <field name="state" invisible="True" />

 <button name="do_clear_done" type="object"

 string="Clear Done"

 states="open,cancel"

 class="oe_highlight" />

 <field name="stage_id"

 widget="statusbar"

 options="{'clickable': True, 'fold_field': 'fold'}" />

</header>

The statusbar widget can be used either with a state selection field or a stage many-to-
one field. These two kinds of fields can be found across several Odoo core modules.

The clickable option allows the user to change the document stage by clicking on the
status bar. Having it enabled provides flexibility to the user. But there are also cases where
we need more control over the workflow, and require the users to progress through the
stages using only the available action buttons.

Exploring the form view structure 337

Changes in Odoo 12
Until Odoo 11, the clickable option was a field attribute, <field
widget="statusbar" clickable="True" />. In Odoo 12, it
was converted into a widget option, <field widget="statusbar"
options="{'clickable': True}" />.

The fold_field option is used to allow less important stages, such as canceled, to
be hidden (folded) in a More stage group. The stages to fold must have a boolean field
identifying them. fold_field is set with the field name that's used for this. In this case,
it is named fold.

Using states instead of stages
The stage is a many-to-one field that uses a supporting model to set up the steps of the
process. It is flexible, can be configured by end users to fit their specific business process,
and is perfect for supporting Kanban boards. The library checkouts model is using it.

The state is a closed selection list featuring fixed process steps, such as New, In Progress,
and Done. It can be used in business logic since the available states can't change. But it
can't be configured by end users.

Each of the approaches has pros and cons. It is possible to benefit from the best of both
options by using stages and having each stage mapped into a state. The checkout model
implemented this, adding a state field in the checkout stages model, which is also directly
available in the checkout model through a related field.

If a model is using states only, the status bar pipeline can also be used, with the
statusbar widget. However, the fold_field option is not available; instead, the
statusbar_visible attribute can be used, listing the states to make visible.

Using the status bar with a state field looks like this:

<field name="state"

 widget="statusbar"

 options="{'clickable': True}"

 statusbar_visible="draft,open,done"

/>

Notice that the previous code is not used in the library_checkout module. Since it
supports the more flexible stages, we prefer to use them on the user interface.

Now that we're are done with the header section, let's look at the main form section.

338 Backend Views – Designing the User Interface

Designing the document sheet
The sheet canvas is the main area of the form and is where the actual data elements are
placed. It is designed to look like an actual paper document.

Usually, a document sheet structure will contain the following areas:

• A document title at the top

• A button box at the top-right corner

• Document header data fields

• A notebook at the bottom, for additional fields that can be organized into tabs
or pages

The document will often contain detailed lines of code. These are usually presented on the
notebook's first page.

Here is the expected XML structure:

 <sheet>

 <!-- Button box -->

 <div class="oe_button_box" name="button_box" />

 <!-- Header title -->

 <div class="oe_title" />

 <!-- Header fields -->

 <group />

 <!-- Notebook -->

 <notebook />

 </sheet>

After the sheet, we usually have the Chatter widget, which contains the document
followers, discussion messages, and planned activities.

Let's go through each of these areas. The button box will be discussed later, so next, we
will discuss the header title.

Exploring the form view structure 339

Adding a header title
The header title will usually display the document's title in large letters. It may be followed
by a subtitle and may also have an image next to it.

First, a couple of fields need to be added to the checkout model. A field needs to be used
as the title, and an image needs to be used to represent the borrower. Edit the library_
checkout/models/library_checkout.py file and add the following code:

 name = fields.Char(string="Title")

 member_image = fields.Binary(related=

 "member_id.image_128")

The header title goes inside a <div class="oe_title"> element. Regular HTML
elements, such as div, span, h1, and h3, can be used.

In the following code, the <sheet> element has been expanded to include the title, plus
some additional fields as subtitles:

<sheet>

 <div name="button_box" class="oe_button_box" />

 <field name="member_image" widget="image"

 class="oe_avatar" />

 <div class="oe_title">

 <label for="name" class="oe_edit_only"/>

 <h1><field name="name"/></h1>

 <h3>

 By

 <label for="member_id" class="oe_edit_only"/>

 <field name="member_id" class="oe_inline" />

 </h3>

 </div>

 <!-- More elements will be added from here... -->

</sheet>

340 Backend Views – Designing the User Interface

The preceding XML render includes the following:

• A button box <div> element. It is empty now but can be used to add smart buttons.

• An image field, for member_image, using an avatar-like image widget.

• A <div> element containing the document title elements. Inside the title, there is
the following:

 � A <label> for the name field, which is only visible in edit mode.

 � The name field, which is rendered as an HTML <h1> heading.

 � A <h3> subtitle heading containing the member_id field. This is only visible
in read mode. The <field> tag uses oe_inline to let the HTML elements
manage the text flow.

Fields outside a <group> element don't have labels rendered for them. The preceding
XML has no <group> element, so labels need to be explicitly added.

After the title element, there will usually be header fields, organized into groups.

Organizing the form content using groups
The main content of the form should be organized using <group> tags.

The <group> tag inserts two columns in the canvas. Fields that are added inside a group
use these two columns – the first for the field label and the second for the field value
widget. Adding more fields to the group will stack them vertically as new fields are added
in a new row.

A common pattern is to have two columns of fields, side by side. You can do this by
adding two <group> tags nested into a top group.

Continuing with our form view, we'll use this to add the main content, after the title's
<div> section:

<!-- More elements will be added from here... -->

<group name="group_top">

 <group name="group_col1">

 <field name="request_date" />

 </group>

 <group name="group_col2">

 <field name="close_date" />

Exploring the form view structure 341

 <field name="user_id" />

 </group>

</group>

The top <group> element creates two columns in the canvas. Each of the two nested
<group> elements uses one of these columns. The first nested group uses the left column,
while the second group takes the right column.

The <group> elements were assigned a name. This is not required but is recommended
so that the module is easier to extend.

The <group> element can also have a string attribute, which is used to display title text
for it.

Changes in Odoo 11
The string attribute cannot be used as an anchor for inheritance anymore.
This is because the corresponding text can be translated, and this can break
inherited/extension views. The name attribute should be used instead.

The following elements can be used to adjust the view layout:

• The <newline> element can be used to force a new line so that the next element is
rendered in the next row's first column.

• The <separator> element can be added to add section titles. A title text can be
set using the string attribute.

The col and colspan attributes provide additional control over the grid layout:

• The col attribute is used on <group> elements to customize the number of columns
it contains. By default, a <group> element contains two columns, but that can be
changed to any other number. Even numbers work better since, by default, each field
that's added takes up two columns – one for the label and one for the value.

• The colspan attribute can be used on group-contained elements to set a specific
number of columns they should take. By default, a field takes two columns.

342 Backend Views – Designing the User Interface

The following code shows an alternative version of the top group element and uses
col="4" to present the four fields in two columns:

<group name="group_top" col="4">

 <field name="request_date" />

 <field name="user_id" />

 <field name="close_date" />

</group>

Notice that the order of the fields is different because the fields are placed from left to
right, and then from top to bottom. The element was used to
occupy the two first columns of the second row so that the close_date field takes the
last two columns.

Some forms also feature a notebook section to organize the additional fields on
different pages.

Adding tabbed notebooks
The notebook element is another way to organize the form's content. It is a container
with multiple tabbed pages. These can be used to keep less-used data out of sight until it's
needed or to organize a large number of fields by topic.

The checkout form will have a notebook element, and the first page will contain the list of
borrowed books. For this, after the <group name="group_top"> element, which we
added in the previous section, include the following XML:

<notebook>

 <page name="page_lines" string="Borrowed Books">

 <field name="line_ids" />

 </page>

</notebook>

This notebook contains only one page. To add more, just include more <page> elements
inside the <notebook> element. The page canvas does not render field labels by default.
For that to happen, the fields should be placed inside a <group> section, just like for the
form main canvas.

In this case, the one-to-many line_ids field was added inside the page, with no
<group> element, so no label will be rendered for it.

Using fields 343

The page element supports the following attributes:

• string, for the page title. This is required.

• attrs is a dictionary for mapping the invisible and required attribute
values to the result of a domain expression.

• accesskey, an HTML access key.

This section discussed the typical layout for a form view, as well as the most important
elements to use for this. The most important elements are the data fields. The next section
discusses them in detail.

Using fields
Inside a form or list view, fields widgets are the way to present and edit data from model
fields.

View fields have a few attributes available to them. Most of these attribute values have
defaults that are taken from the model definition, but these can be overridden in the view.

Here is a quick reference for the common field attributes:

• name is the field name in the model and identifies the field that's being rendered by
this element.

• string is the label text to be used. It overrides the model definition.

• help provides some tooltip help text that's shown when the mouse is hovered over
the field.

• placeholder provides suggestion text to be displayed inside the field.

• widget sets a specific widget to be used to render the field. The available widgets
will be discussed later in this section.

• options is a JSON data structure that's used to pass additional options to the
widget. The values to use depend on the widget being used.

• Class is a comma-separated list of CSS classes to use for the field HTML
rendering process.

• nolabel="True" prevents the automatic field label from being presented. It only
makes sense for fields inside a <group> element and is often used along with a
<label for="..."> element.

344 Backend Views – Designing the User Interface

• invisible="True" makes the field not visible, but its data is fetched from the
server and is available on the form. Note that forms can't write on invisible fields.

• readonly="True" makes the field read-only on the form.

• required="True" makes the field mandatory on the form.

The following special attributes are only supported by specific field types:

• password="True" is used for text fields. It is displayed as a password field,
masking the characters that are typed in.

• filename is used for binary fields and is the name of the model field to be used for
the name of the uploaded file.

Two more topics are worth further discussion. One is how to have additional control of
the field label's presentation, while the other is about using different web client widgets for
a better user experience.

Modifying field labels
Fields won't automatically render labels unless they're inside a <group> element. In that
case, labels will be explicitly suppressed using nolabel="True".

Labels can be explicitly added using a <label for="..."/> element. This gives you
more control over where to display field labels. The following code was used in the form title:

<label for="name" class="oe_edit_only" />

The for attribute identifies the field we should get the label text from. The optional
string attribute can set specific text for the label. CSS classes can also be used. The
previous code used the following:

• class="oe_edit_only" makes the element visible in edit mode only.

• class="oe_read_only" makes the element visible in read mode only.

This can be used to control how field labels are presented. How the field data is presented
can also be adjusted using different widgets.

Using fields 345

Choosing field widgets
Field content is presented using a web client widget. This can influence the way data is
presented to the user, as well as the interaction when setting a value on the field.

Each field type is displayed using the appropriate default widget. However, additional
alternative widgets may be available.

Text field widgets
For text fields, the following widgets can be used:

• email renders as an actionable mailto HTML link.

• phone renders as an actionable phone HTML link.

• url is used to format the text as a clickable URL.

• html is used to render the text as HTML content. In edit mode, it features a
WYSIWYG editor to allow you to format the content without the need to use
HTML syntax.

Numeric field widgets
For numeric fields, the following widgets are available:

• handle is specifically designed for sequence fields in list views and displays a
handle to drag lines and reorganize their order.

• float_time formats a float field as hours and minutes.

• monetary displays a float field as a currency amount. It expects the currency
that's used to be in a currency_id companion field. If the currency field has a
different name, it can be set with options="{'currency_field': '<field
name>'}".

• progressbar represents a float as a percentage progress bar, which is useful for
fields representing a completion rate.

• percentage and percentpie are other widgets that can be used with float fields.

346 Backend Views – Designing the User Interface

Relation and selection field widgets
For relation and selection fields, the following widgets are available:

• many2many_tags displays values as a list of button-like labels.

• many2many_checkboxes displays the selectable values as a list of checkboxes.

• selection uses the selection field widget for a many-to-one field.

• radio displays the selection field options using radio buttons.

• priority represents the selection field as a list of clickable stars. The selection
options are usually numeric digits.

• state_selection shows a traffic light button and is typically used for the
Kanban state selection list. The normal state is gray, done is green, and any other
state is represented in red.

Changes in Odoo 11
The state_selection widget was introduced in Odoo 11 and replaces
the former kanban_state_selection, which has been deprecated.

Binary field widgets
For binary fields, the following widgets are available:

• image presents the binary data as an image.

• pdf_viewer presents the binary data in a PDF preview widget (introduced in
Odoo 12).

Relation fields
The relation field widget allows you to search for and select a related record.

It also allows you to open the related record's form or navigate to the corresponding form
and create new records on the fly, also known as quick create.

These features can be disabled using the options field attribute:

options="{'no_open': True, 'no_create': True}"

Using fields 347

The context and domain field attributes are particularly useful in relational fields:

• context can set default values for related records that are created from the field.

• domain limits the selectable records. A common example is for a field to have the
selection options depend on the value of another field that's present in the form.

To-many fields can also use the mode attribute to set the view types to use to display the
records. A tree view is used by default, but other options include form, kanban, and
graph. It can be a comma-separated list of view modes.

Relation fields can include inline specific view definitions to use. These are declared
as nested view definitions, inside the <field> element. For example, the line_ids
checkout can define a specific list and form views for these lines:

<notebook>

 <page name="page_lines" string="Borrowed Books" >

 <field name="line_ids">

 <tree>

 <field name="book_id" />

 </tree>

 <form>

 <field name="book_id" />

 </form>

 </field>

 </page>

</notebook>

The line list will use the inline <tree> definition provided. When you click on a line,
a form dialog will appear and use the structure in the inline <form> definition.

We've seen everything that can be done with fields. The next most important view element
is buttons, which are used to run actions.

348 Backend Views – Designing the User Interface

Using buttons
Buttons allow the user to trigger actions, such as opening another view or running
business logic in a server function. They were introduced previously in this chapter, when
we discussed the form header, but they can also be added anywhere in form and list views.

Buttons support the following attributes:

• string is the button text label, or the HTML alt text when an icon is used.

• type is the type of action to perform. Possible values include object, to call a
Python method, or action, to run a window action.

• name identifies the specific action to perform, according to the chosen type:
either a model method name or the database ID of a window action to run. The
%(<xmlid>)d formula can be used to translate an XML ID into the necessary
database ID when the view is being loaded.

• args is used when type="object" is used to pass additional parameters to the
method call.

• context sets the values on the context. This could be used in the called method or
affect the view that's opened by the windows action.

• confirm is the text for a confirmation message box when the button is clicked.
This is displayed before the action is run.

• special="cancel" is used on wizard forms to add a Cancel button, which is
used for closing the form without performing any action.

• icon is an icon image to be shown in the button. The available icons are from the
Font Awesome set and they should be specified using the corresponding CSS class,
such as icon="fa-question". For an icon reference, check out https://
fontawesome.com/.

Changes in Odoo 11
Before Odoo 11, the button icons were images that originated from the GTK
client library and were limited to the ones available in addons/web/
static/src/img/icons.

The workflow engine was deprecated and removed in Odoo 11. In previous
versions, where workflows were supported, buttons could trigger workflow
engine signals using type="workflow". In this case, the name attribute
was supposed to have a workflow signal name.

https://fontawesome.com/
https://fontawesome.com/

Using buttons 349

A particular kind of button that's found at the top right area of some forms is called a
smart button. Let's have a closer look at it.

Using smart buttons
It's not uncommon for document forms to have a smart button area in the top-right
section. Smart buttons are shown as rectangles with a statistic indicator that can be
followed through when clicked.

The Odoo UI pattern is to have an invisible box for smart buttons. This button box is
usually the first element in <sheet> and looks like this:

<div name="button_box" class="oe_button_box">

 <!-- Smart buttons will go here... -->

</div>

The container for the buttons is just a div element with the oe_button_box class. In
Odoo versions before 11.0, the oe_right class may also be needed to ensure that the
button box stays aligned to the right-hand side of the form.

For the library checkout module, a smart button will be added for the still open checkouts
that are being made by this library member. The button should present a statistic with
the count of those checkouts and, when clicked, should open a checkout list that contains
those items.

For the button statistic, a computed field needs to be created in the library.checkout
model, in the library_checkout/models/library_checkout.py file:

 count_checkouts = fields.Integer(

 compute="_compute_count_checkouts")

 def _compute_count_checkouts(self):

 for checkout in self:

 domain = [

 ("member_id", "=", checkout.member_id.id),

 ("state", "not in", ["done", "cancel"]),

]

 checkout.count_checkouts =

 self.search_count(domain)

350 Backend Views – Designing the User Interface

The preceding computation loops through each checkout record to compute and runs a
search query for that member, counting the number of open checkouts.

Tip
The preceding implementation goes against a performance principle: don't do
record search operations inside loops.

For performance optimization, the search operation should be done in bulk, before the
loop, and the result should be used inside the loop. An example of this implementation is
shown next. This involves non-trivial code, so feel free to skip it if you feel it is too difficult
to understand right now.

The read_group() method can be used to get the grouped data. It returns a list of
dict rows, such as [{'member_id_count': 1, 'member_id': (1, 'John
Doe'), …), …]. It is hard to look up a member_id in this data structure. This lookup
can become a trivial operation if the list of rows is converted into a dictionary that's
mapping a member_id to a record count.

Here is the alternative implementation, using these techniques:

 def _compute_count_checkouts(self):

 members = self.mapped("member_id")

 domain = [

 ("member_id", "in", members.ids),

 ("state", "not in ", ["done", "cancel"]),

]

 raw = self.read_group(domain, ["id:count"],

 ["member_id"])

 data = {

 x["member_id"][0]: x["member_id_count"] for

 x in raw

 }

 for checkout in self:

 checkout.count_checkouts = data.get(

 checkout.member_id.id, 0)

Using buttons 351

Now that there is a field computing the number to display, the smart button can be added
to the view. Right at the top of the <sheet> section, replace the button box placeholder
we added previously with the following code:

<div name="button_box" class="oe_button_box">

 <button type="action"

 name="%(action_library_checkout)d"

 class="oe_stat_button"

 icon="fa-book"

 domain="[('member_id', '=', member_id)]"

 context="{'default_member_id': member_id}"

 >

 <field name="count_checkouts"

 string="Checkouts"

 widget="statinfo" />

 </button>

</div>

The button element itself is a container, and fields for displaying statistics should be
added inside it. These statistics are regular fields that use a specific statinfo widget. The
number of open checkouts is presented using the count_checkouts field, inside the
button definition.

The smart button must have the class="oe_stat_button" CSS style and should
have an icon set with the icon attribute.

In this case, it contains type="action", meaning that a button runs a window action,
as identified by the name attribute. The %(action_library_checkout)d expression
returns the database ID for the action to run. This window action opens the checkout list. To
ensure only the relevant records are displayed there, the domain attribute is used. And if a
new record is created on that view, it is convenient that the current member is set as a default
value. This can be done using the default_member_id key in the context attribute.

For reference, these are the attributes that can be used with smart buttons:

• class="oe_stat_button" renders a rectangle instead of a regular button.

• icon sets the icon to use, as chosen from the Font Awesome set. Visit http://
fontawesome.com to browse the available icons.

http://fontawesome.com
http://fontawesome.com

352 Backend Views – Designing the User Interface

• type and name are the button type and the name of the action to trigger,
respectively. For smart buttons, the type will usually be action for a window
action, while name will be the ID of the action to execute. "%(action-xmlid)d"
can be used to convert an XML ID into the needed database ID.

• string adds label text to the button. It wasn't used in the preceding code example
because the field is providing a text label.

• context can be used to set default values on the target view, for new records that
are created on the view that's being navigated from the button.

• help adds a help tooltip that's displayed when the mouse pointer hovers over
the button.

Other than buttons and smart buttons, dynamic elements can be added to views to change
the values or visibility of elements. This will be discussed in the next section.

Adding dynamic view elements
View elements can dynamically change their appearance or behavior, depending on the
field values. Field values can be dynamically set values of domain filters on other form
fields through the onchange mechanism. These features will be discussed next.

Using onchange events
The onchange mechanism allows us to trigger server logic while the user is modifying
data on an unsaved form. For example, when setting the product field, a unit price on the
same form can be automatically set.

In older Odoo versions, the onchange events were defined at the view level, but
since Odoo 8, they are declared directly on the model layer, without the need for
any specific view markup. This can be done with methods that use the @api.
onchange('field1', 'field2', ...) decorator. It binds onchange logic to the
declared fields. The onchange model methods were discussed in more detail in Chapter 8,
Business Logic – Supporting Business Processes, and an example was discussed there.

The onchange mechanism also takes care of automatically recalculating the computed
fields, reacting immediately to user input. Continuing with the previous example, if the
price field is changed, a computed field with the total amount would also be automatically
updated with the new price information.

Adding dynamic view elements 353

Using dynamic attributes
View elements can have some attributes react to changes on field values; for example,
to become visible or mandatory.

The following attributes can be used to control the visibility of view elements:

• groups make an element visible, depending on the security groups the current
user belongs to. Only the members of the specified groups will see it. It expects a
comma-separated list of group XML IDs.

• states make an element visible, depending on the record's state field. It expects
a comma-separated list of state values. Of course, the model must have a state
selection field.

• attrs can set both the invisible and required attributes based on certain conditions.
It uses a dictionary, with invisible, readonly, and required as the possible
keys. These keys map to a domain expression that evaluates to true or false.

Here is an example of using attrs. To have the closed_date field only visible in the
done state, the following code can be used:

<field name="closed_date"

 attrs="{'invisible':[('state', 'not in',

 ['done'])]}"

/>

The invisible attribute is available in any element, not only fields. For example, it can
also be used on notebook pages and group elements.

The readonly and required attributes are only available for data fields and allow us to
implement basic client-side logic, such as making a field mandatory while depending on
other record values, such as the state.

This closes our discussion of form views. However, there are still a few view types to
explore. Next, we will discuss list/tree views.

354 Backend Views – Designing the User Interface

Exploring list views
List views are probably the most used view type, closely followed by form views. List views
present records as lines and data fields as columns. By default, they are read-only, but they
can also be made editable.

The list view's basic definition is simple. It is a sequence of field elements inside a <tree>
element. library_checkout already contains a simple list view, in the views/
checkout_view.xml file, that looks like this:

 <record id="view_tree_checkout" model="ir.ui.view">

 <field name="name">Checkout Tree</field>

 <field name="model">library.checkout</field>

 <field name="arch" type="xml">

 <tree>

 <field name="request_date" />

 <field name="member_id" />

 </tree>

 </field>

 </record>

A list view can contain fields and buttons, and the attributes that are described for forms
are also valid in list views.

Moving on from the basics, a few additional features can be used on list views. In the next
section, we will introduce the new list header section.

Adding a list view header section
Similar to form views, list views can also have a header section, where buttons can be
added to perform actions on the model. The syntax is the same as for views.

For example, there is a Send Messages option available in the Action menu. This is not
directly visible to the users, and it can be made more visible as a header button.

Editing the tree view to add this button looks like this:

 <tree>

 <header>

 <button type="action"

 name="%(action_checkout_messag)d"

 string="Send Messages"

Exploring list views 355

 />

 <header>

 <field name="request_date" />

 <field name="member_id" />

 </tree>

The button actions work similarly to the Action menu options. The buttons are only
visible when list records are selected.

New in Odoo 14
The <header> element on list views was introduced in Odoo 14. This feature
is not available in previous versions.

In terms of the list view's content, rows can use different colors to highlight specific
conditions to the user, such as a late activity in red. The next section explains how to use
such decorations.

Using line decoration
The following expanded version of the list adds a few additional fields, as well as some
decorator attributes, to the <tree> root element:

 <tree

 decoration-muted="state in ['done', 'cancel']"

 decoration-bf="state=='open'"

 >

 <header>

 <button type="action"

 name="%(action_checkout_messag)d"

 string="Send Messages"

 />

 <header>

 <field name="state" invisible="True" />

 <field name="name" />

 <field name="request_date" />

 <field name="member_id" />

 <field name="stage_id" />

 </tree>

356 Backend Views – Designing the User Interface

The tree element is using two decoration attributes by using expressions with the
state field. decoration-muted uses gray lines to show the done or canceled state.
decoration-bf highlights the open state with bold lines.

The fields that are used in these expressions must be declared in a <field> element of
the view to ensure that the necessary data is retrieved from the server. If it doesn't need to
be displayed, it can have the invisible="1" attribute set on it.

The row's text color and font can change based on the evaluation of a Python expression.
This can be done through the decoration–NAME attributes, which can be set with an
expression to evaluate. The available attributes are as follows:

• decoration-bf sets the font to bold.

• decoration-it sets the font to italic.

• decoration-muted sets the text color to gray.

• decoration-primary sets the text color to a dark blue.

• decoration-success sets the text color to a light blue.

• decoration-warning sets the text color to yellow.

• decoration-danger sets the text color to red.

The preceding decoration names are based on the Bootstrap library. See https://
getbootstrap.com/docs/3.3/css/#helper-classes for more details.

Other than the decoration attributes, a few others are available to control the behavior of
the list view.

Other list view attributes
Some of the other relevant attributes of the tree element are as follows:

• default_order is used to set a specific sort order for the rows. Its value is a
comma-separated list of field names that's compatible with a SQL ORDER BY clause.

• create, delete, and edit, if set to false (in lowercase), disable the
corresponding action on the list view.

• editable makes records editable directly on the list view. Possible values include
top and bottom; that is, the location where the new records will be added.

These attributes allow you to control the default row order and whether the record can be
edited directly in the view.

https://getbootstrap.com/docs/3.3/css/#helper-classes
https://getbootstrap.com/docs/3.3/css/#helper-classes

Exploring search views 357

One more relevant feature is the ability to calculate totals and subtotals for list view
columns, as shown in the next section.

Adding column totals
List views also support column totals for numeric fields. Summary values can be displayed
using one of the aggregation attributes that's available — sum, avg, min, or max.

The aggregation attribute that's used should be set with label text for the summary value.

For example, let's consider that the checkout model has added a field stating the number
of borrowed books, num_books. To see the corresponding total sum on the list view, the
following field element should be added:

 <field name="num_books" sum="Num. Books" />

The num_books field counts the number of borrowed books in each checkout. It's a
computed field, and we need to add it to the model:

 num_books = fields.Integer(compute=

 "_compute_num_books")

 @api.depends("line_ids")

 def _compute_num_books(self):

 for book in self:

 book.num_books = len(book.line_ids)

The group subtotal is only available for stored fields. So, in the previous example,
store=True needs to be added if group subtotals are an important feature for the library
app users.

After form and list views, the next most important UI element is the search view, which
lets us perform a default search and group by a filter.

Exploring search views
At the top right of the view, there is a search box with a few buttons underneath it,
including Filters and Group By. When you're typing in the search box, you will see
suggestions regarding the field to be searched.

The search options that are proposed are configured in the search view. The current
search view can be inspected using the developer menu and by choosing the Edit
ControlPanelView option.

358 Backend Views – Designing the User Interface

Search views are defined through the <search> view type. It can provide the following
types of elements:

• <field> elements to add filter options when typing in the search box.

• <filter> elements to add predefined filters under the Filters and Group By
buttons.

• A <searchpanel> element, to include a navigation tree on the left-hand side of
the user interface.

Changes in Odoo 13
The <searchpanel> widget for the list and Kanban views was introduced
in Odoo 13 and is not available in earlier versions.

To add these search options to the library_checkout module, edit the views/
checkout_view.xml file and add the following record:

<record id="view_filter_checkout" model="ir.ui.view">

 <field name="model">library.checkout</field>

 <field name="arch" type="xml">

 <search>

 <!-- Add content here -->

 <field name="name" />

 </search>

 </field>

</record>

Now, let's walk through each of the element types that can be added here. The <field>
element will be explained next.

Understanding the <field> element
When typing in the search box, the user will see suggestions that will let them apply this
search to particular fields. These options are defined using <field> elements.

For example, adding the following XML inside the <search> element will propose
searching the text in additional fields:

 <field name="name"/>

 <field name="member_id"/>

 <field name="user_id"/>

Exploring search views 359

This code adds search result suggestions for the title, member, and user fields.

The search <field> elements can use the following attributes:

• name is the field name to be searched.

• string is the text label to use.

• operator can be used as a comparison operator that's different from the default
one; that is, = for numeric fields and ilike for the other field types.

• filter_domain sets a specific domain expression to use for the search, providing
one flexible alternative to the operator attribute. The searched text string is referred
to in the expression as self. A trivial example is filter_domain="[('name',
'ilike', self)]".

• groups makes searching on the field available only to users that belong to some
security groups. It expects a comma-separated list of XML IDs.

These filters can be activated independently and will be joined by an OR logic operation.
Blocks of filters separated with a <separator/> element will be joined by an AND
logic operation.

This section provided a good summary of how <field> elements can be used. Now, let's
learn about the <filter> elements that are available.

Understanding the <filter> element
Predefined options are available upon clicking the Filter and Group By buttons, under the
search box. These can be clicked by users to apply their filter conditions.

Tip
Filter elements can also be used by window actions, which can activate them,
by adding a search_default_<filter name>: True key to the
context.

Filter options can be added with the <filter> element, along with a domain attribute
setting for specific search conditions to use, through a domain filter. The following is an
example:

 <filter name="filter_not_done"

 string="To Return"

 domain="[('state','=','open')]"/>

 <filter name="filter_my_checkouts"

360 Backend Views – Designing the User Interface

 string="My Checkouts"

 domain="[('user_id','=',uid)]"/>

This adds two selectable filters. They will be available for selection in the Filters button,
below the search box. The first filters the To Return checkouts, which are the ones in the
open state. The second one filters the checkout where the current user is the responsible
librarian, filtering user_id by the current user. This is available from the context uid key.

The filter element is also used to add options to the Group By button. Here is an example:

 <filter name="group_user"

 string="By Member"

 context="{'group_by': 'member_id'}"/>

This filter sets a group by context key with the field name to group by. In this case, it
will group by member_id.

For the <filter> elements, the following attributes are available:

• name is an identifier to be used for later inheritance/extension or to be enabled
using a window action context key. It is not mandatory, but it is good practice to
always provide it.

• string is the label text to be displayed for the filter. It is mandatory.

• domain is the domain expression to be added to the current domain.

• context is a context dictionary to be added to the current context. It will usually
be used to set the group_by key with the field name to group by.

• groups makes this element field available only for a list of security groups
(XML IDs).

Upon adding the preceding code to the library_checkout module, the module will
be upgraded. These filter and group by options will be available in the buttons near the
search box.

Another search view element that's available is the search panel. We'll look at this in the
next section.

Exploring search views 361

Adding a search panel
Search views can also add a search panel, which will be visible on the left-hand side of the
selected view. It lists the available values in a field. Clicking on a value filters the records
by that value. By default, this search panel is only visible in the list and Kanban views,
although this can be changed.

The following code adds a search panel to the library checkout view. Add the following
XML inside the <search> view element:

 <searchpanel>

 <field name="member_id" enable_counters="1" />

 <field name="stage_id" select="multi" />

 </searchpanel>

The preceding code adds two fields to the search panel called members and stages.
Each of them lists several available values, and clicking on these values applies the
corresponding filter.

The <searchpanel> element has one attribute available, view_type, that can set
the view types where the panel is to be made visible. By default, its value is view_
type="tree,kanban".

The <field> elements inside <searchpanel> support a few attributes. Here is a
selection of the most important ones:

• string sets specific label text to use.

• icon sets an icon to be presented.

• color sets the icon's color. It uses an HTML hex code, such as #8F3A84.

• select="multi" adds selection checkboxes, which allow the user to select
multiple values. This is only available for many-to-one and many-to-many fields.

• groups sets a list XML IDs of the security groups that can see the search panel.

• enable_counters="1" adds a record number counter next to each value.
Beware that this can have a performance impact on the view.

• limit sets the number of selected values that are allowed. The default is 200 and
can be set to zero so that there's no limit.

Changes in Odoo 13
The search panel element was introduced in Odoo 13 and is not available in
previous versions.

362 Backend Views – Designing the User Interface

This is what the list view with the search panel looks like, after making these changes:

Figure 10.4 – List view with the search panel

The form, list, and search views are the most frequently used view types. But there are a
few more view types that are available for designing our user interfaces. We'll look at these
in the next section.

Understanding the other available view types
The form and list views are essential user interface components, but other than them, a
few other specific view types can be used.

We're already familiar with the three basic views: form, tree, and search. Beyond
these, the following view types are also available in Odoo Community Edition:

• kanban presents records as cards that can be organized in columns to create
Kanban boards.

• activity presents a summary of scheduled activities.

• calendar present records in a calendar format.

• graph presents data as a graphical chart.

• pivot presents data as an interactive pivot table.

• qweb is used to declare QWeb templates to be used in reports, Kanban views, or web
pages. However, this is not a web client-supported view type like forms and lists are.

Understanding the other available view types 363

Kanban views will be presented in depth in Chapter 11, Kanban Views and Client-Side
QWeb, so they won't be addressed here.

Changes in Odoo 14
The diagram view type, which could be used to present relationships
between records, was removed in Odoo 14. The last piece of documentation
that's available for this, for Odoo 13, can be found at https://www.
odoo.com/documentation/13.0/developer/reference/
addons/views.html#diagram.

Odoo Enterprise Edition supports a few more views types:

• dashboard, which presents aggregate data using subviews, such as pivots and
graphs.

• cohort, which is used to show how data changes over a certain period.

• map, which presents records in a map and can display routes between them.

• Gantt, which presents date scheduling information in a Gantt chart. This is
commonly used in project management.

• grid, which presents data organized in a grid with rows and columns.

The official documentation provides good references to all of the views and their available
attributes: https://www.odoo.com/documentation/15.0/developer/
reference/backend/views.html#view-types.

Tip
Additional view types can be found as community add-on modules. Under
the Odoo Community Association umbrella, web client extensions, including
view types and widgets, can be found in the https://github.com/
OCA/web GitHub repository. For example, the web_timeline add-on
module provides a timeline view type, which is also capable of presenting
scheduling information as Gantt charts. It is a Community Edition alternative
to the gantt view type.

The following sections provide a brief explanation of the additional view types that are
available in Odoo Community Edition.

https://www.odoo.com/documentation/13.0/developer/reference/addons/views.html#diagram
https://www.odoo.com/documentation/13.0/developer/reference/addons/views.html#diagram
https://www.odoo.com/documentation/13.0/developer/reference/addons/views.html#diagram
https://github.com/OCA/web
https://github.com/OCA/web

364 Backend Views – Designing the User Interface

Exploring the activity view
The activity view provides a summary of the scheduled activities. It is provided by the
mail add-on module, so it needs to be installed for this view type to be available.

It can be enabled by adding the activity view type to the view_mode field of
the window action. From the Library | Checkouts menu option, edit the action_
library_checkout window action:

 <field name="view_mode">tree,form,activity</field>

If no view definition exists, one will be automatically generated.

This is a simple definition that's equivalent to the default generated one:

<record id="view_activity_checkout" model="ir.ui.view">

 <field name="model">library.checkout</field>

 <field name="arch" type="xml">

 <activity string="Checkouts">

 <templates>

 <div t-name="activity-box">

 <div>

 <field name="ntame" />

 </div>

 </div>

 </templates>

 </activity>

 </field>

</record>

The HTML in the <templates> element is used to describe the record information.

Understanding the other available view types 365

Exploring the calendar view
This view type presents the records in a calendar that can be viewed using different
periods: per year, month, week, or day.

This is a calendar view for the library checkouts that shows the items on a calendar
according to their request date:

<record id="view_calendar_checkout" model="ir.ui.view">

 <field name="model">library.checkout</field>

 <field name="arch" type="xml">

 <calendar date_start="request_date"

 color="user_id">

 <field name="member_id" />

 <field name="stage_id" />

 </calendar>

 </field>

</record>

The following attributes are supported by the calendar view:

• date_start is the field for the start date (required).

• date_stop is the field for the end date (optional).

• date_delay in the field containing the duration in days. It is to be used instead of
date_end.

• all_day provides the name of a Boolean field that is to be used to signal full-day
events. In these events, the duration is ignored.

• color is the field that's used to color a group of calendar entries. Each distinct value
in this field will be assigned a color, and all of its entries will have the same color.

• mode is the default display mode for the calendar. It can be either day, week,
month, or year.

• scales is a comma-separated list of modes available. By default, they all are.

• form_view_id can provide the identifier for a specific form view to use when
you're opening records from the calendar view.

• event_open_popup="True" opens the form view as a dialog window.

366 Backend Views – Designing the User Interface

• quick_add lets you quickly create a new record. Only a description needs to be
given by the user.

Changes in Odoo 11
The display calendar attribute was removed in Odoo 11. In previous
versions, it could be used to customize the format of the calendar entry's title
text; for example, display="[name], Stage [stage_id]".

For this view to be available in the Library | Checkouts menu option, the view type needs
to be added to the view_mode area of the corresponding window with the action_
library_checkout identifier:

<field name="view_mode">tree,form,calendar</field>

After making this module upgrade and reloading the page, the calendar view should
be available.

Exploring the pivot view
The data can also be seen in a pivot table; that is, a dynamic analysis matrix. For this,
we have the pivot view.

The num_books field will be used in the pivot view to add the checkouts model. Data
aggregations are only available for database stored fields; this is not the case for the num_
books field. So, it needs to be modified to add the store=True attribute:

 num_books = fields.Integer(

 compute="_compute_num_books",

 store=True)

To also add a pivot table to the library checkouts, use the following code:

<record id="view_pivot_checkout" model="ir.ui.view">

 <field name="model">library.checkout</field>

 <field name="arch" type="xml">

 <pivot>

 <field name="stage_id" type="col" />

 <field name="member_id" />

 <field name="request_date" interval="week" />

 <field name="num_books" type="measure" />

Understanding the other available view types 367

 </pivot>

 </field>

</record>

The graph and pivot views should contain field elements that describe the axes and
measures to use. Most of the available attributes are common to both view types:

• name identifies the field to use in the graph, just like in other views.

• type is how the field will be used; that is, as a row group (default), measure, or
col (only for pivot tables; it is used for column groups).

• interval is meaningful for date fields and is the time interval that's used to group
time data by day, week, month, quarter, or year.

Other than these essential attributes, more are available and are documented at
https://www.odoo.com/documentation/15.0/developer/reference/
backend/views.html#pivot.

For this view to be available in the Library | Checkouts menu option, the view type needs to
be added in the view_mode area of the action_library_checkout window action:

<field name="view_mode">tree,form,pivot</field>

After making this module upgrade and reloading the page, the calendar view should
be available.

Exploring the graph view
Graph views present charts with data aggregations. The available charts include bar, line,
and pie charts.

Here is an example of a graph view for the checkout model:

<record id="view_graph_checkout" model="ir.ui.view">

 <field name="model">library.checkout</field>

 <field name="arch" type="xml">

 <graph type="bar">

 <field name="stage_id" />

 <field name="num_books" type="measure" />

 </graph>

 </field>

</record>

https://www.odoo.com/documentation/15.0/developer/reference/backend/views.html#pivot
https://www.odoo.com/documentation/15.0/developer/reference/backend/views.html#pivot

368 Backend Views – Designing the User Interface

The graph view element can have a type attribute that can be set to bar (the default),
pie, or line. In the case of bar, the additional stacked="True" element can be used
to make it a stacked bar chart.

The graph uses two types of fields:

• type="row" is the default and sets the criteria to aggregate values.

• type="measure" is used for the fields that are to be used as metrics – that is, the
actual values being aggregated.

Most of the available graph view attributes are common to the pivot view type.
The official documentation provides a good reference: https://www.odoo.
com/documentation/15.0/developer/reference/backend/views.
html#reference-views-graph.

For this view to be available in the Library | Checkouts menu option, the view type needs to
be added to the view_mode area of the action_library_checkout window action:

<field name="view_mode">tree,form,graph</field>

After making this module upgrade and reloading the page, the calendar view should be
available.

Summary
Well-designed views are key for a good user experience. Applications need to support the
business logic, but an easy-to-use user interface is also important to help users navigate
efficiently through the business processes and minimize errors.

The Odoo web client provides a rich set of tools to build such user interfaces. This
includes a menu system, several view types, and different field widgets to choose from.

Adding menu items is the first step, and these use window actions to let the web client
know what views should be presented.

Most of the user interaction will happen on form views, and it is important to understand
all the elements that can be used there. We started by presenting the general structure that
form views are expected to follow, as well as the elements to be added to each.

This includes the header section, the title fields, the other form fields, a possible notebook
section with pages, and a final messaging area.

https://www.odoo.com/documentation/15.0/developer/reference/backend/views.html#reference-views-graph
https://www.odoo.com/documentation/15.0/developer/reference/backend/views.html#reference-views-graph
https://www.odoo.com/documentation/15.0/developer/reference/backend/views.html#reference-views-graph

Further reading 369

Record data is presented and modified using field elements. Details were presented on
how to use them and the several options that can be used to adjust their presentation.
Another important element is buttons, which allow us to navigate to other views or run
server functions.

The next view type we discussed was the list view. While simpler than the form view, it is
an important record navigation tool. The search view was also discussed and is useful for
adding predefined filter and grouping options to the search box area. This is important for
users to quickly access the data that's needed for their regular operations.

Finally, an overview was provided of the other view types available, such as the pivot,
graph, and calendar views. There are used less often, but they still have an important role
in specific cases.

In the next chapter, we'll learn more about a specific view type that we've not covered in
this chapter: the Kanban view and the templating syntax that's used by it, QWeb.

Further reading
The following reference materials complement the topics that were described in this chapter:

• The official Odoo documentation:

 � On actions: https://www.odoo.com/documentation/15.0/
developer/reference/backend/actions.html

 � On views: https://www.odoo.com/documentation/15.0/developer/
reference/backend/views.html

• The Font Awesome icon index: https://fontawesome.com/v4.7.0/
icons/

https://www.odoo.com/documentation/15.0/developer/reference/backend/actions.html
https://www.odoo.com/documentation/15.0/developer/reference/backend/actions.html
https://www.odoo.com/documentation/15.0/developer/reference/backend/views.html
https://www.odoo.com/documentation/15.0/developer/reference/backend/views.html
https://fontawesome.com/v4.7.0/icons/
https://fontawesome.com/v4.7.0/icons/

11
Kanban Views and

Client-Side QWeb
Kanban views support lean processes, providing a visual representation of the work in
progress and the status of each work item. This can be an important tool to streamline
business processes.

This chapter introduces kanban board concepts, and how they are implemented in Odoo
by using the kanban view type, stage columns, and kanban states.

Kanban views are powered by QWeb – the template engine used by Odoo. It is XML-based
and used to generate HTML fragments and pages. It is also used for reports and website
pages, so it is an important part of Odoo that developers should be familiar with.

In this chapter, we will show how to organize a kanban view in several areas, such as the
title and main content, as well as how to use the QWeb syntax to apply the widgets and
effects that are available.

The QWeb template language will be described in detail to provide a complete
understanding of its features.

The later sections will explain how to extend the QWeb templates used in kanban views
and present useful techniques for this. Here, you will learn how to add web assets that you
intend to be used in these views, such as CSS and JavaScript.

372 Kanban Views and Client-Side QWeb

The following topics will be covered in this chapter:

• Introducing kanban boards

• Designing kanban views

• Designing kanban cards

• Exploring the QWeb template language

• Extending kanban views

• Adding CSS and JavaScript assets

By the end of this chapter, you will understand kanban boards and be able to design your
own kanban views.

Technical requirements
This chapter continues enhancing the library_checkout addon module from
Chapter 10, Backend Views – Designing the User Interface. The corresponding code can
be found in the ch11/ directory of the GitHub repository at https://github.com/
PacktPublishing/Odoo-15-Development-Essentials.

Introducing kanban boards
Kanban is a Japanese word literally meaning billboard and is associated with lean
manufacturing. More recently, kanban boards have become popular in the software
industry with the adoption of agile methodologies.

A kanban board provides a visual representation of a work queue. The board is organized
into columns, which represent the stages of the work process. Work items are represented
by cards placed on the appropriate column of the board. New work items start from the
leftmost column and travel through the board until they reach the rightmost column,
which represents the completed work.

The simplicity and visual impact of kanban boards make them a good tool to support
simple business processes. A basic example of a kanban board has three columns: To Do,
Doing, and Done, as shown in the following diagram:

https://github.com/PacktPublishing/Odoo-15-Development-Essentials
https://github.com/PacktPublishing/Odoo-15-Development-Essentials

Introducing kanban boards 373

`

Figure 11.1 – An example of a kanban board

In many cases, a kanban board is a more effective way to manage a process when
compared to heavier workflow engines.

Odoo supports kanban views – along with the classic list and form views – to support
kanban boards. Now that we know what a kanban board is, let's learn how to use one.

Supporting kanban boards in Odoo
Browsing the Odoo apps, we can see two different ways to use kanban views. One is a simple
card list, which is used in places such as contacts, products, employees, and apps. The other
is a kanban board, which is organized in columns representing the steps of a process.

For simple card lists, a good example is the Contacts kanban view. The contact cards have an
image on the left-hand side and a bold title in the main area, followed by a list of values:

Figure 11.2 – The Contacts kanban view

374 Kanban Views and Client-Side QWeb

While this contacts view uses a kanban view, it is not a kanban board.

Examples of kanban boards can be found on the CRM app's Pipeline page or on the
Project Tasks page. An example of the Pipeline page is shown in Figure 11.3:

Figure 11.3 – The CRM Pipeline kanban board

The most important difference between this kanban board and the Contacts kanban
view is the card organization in columns. This is done using the Group By feature, which
is similar to what list views use. Usually, the grouping is done in a stage field. One very
useful feature of kanban views is that they support dragging and dropping cards between
columns, which automatically assigns the corresponding value to the field the view is
grouped by.

The CRM Pipeline page cards have a bit more structure. The main card area also has a
title, followed by a list of relevant information, as well as a footer area. In this footer area,
we can see a priority widget on the left-hand side, followed by an activities indicator, and
on the right-hand side, we can see a small image of the responsible user.

Introducing kanban boards 375

It's not visible in the figure shown in this chapter, but the cards also have an options menu
on the top-right, which is shown when hovering the mouse pointer over it. This menu
allows us to, for example, change a color indicator for the card.

Looking at the cards in both examples, we can see some differences. In fact, their design is
quite flexible, and there isn't a single way to design a kanban card. But these two examples
provide a starting point for your designs.

We will be using the more elaborate structure as a model for the cards on our checkouts
kanban board.

Understanding kanban states
On a kanban board, work items start in the leftmost column, and while the work is in
progress, they travel through the columns until reaching the rightmost column, which
shows the completed items. This implies a push strategy, which means when work on a
column is done, the work item is pushed to the next column.

A push strategy tends to lead to a build-up of work items in progress, which can be
inefficient. Lean approaches advise using a pull strategy instead. Here, each stage pulls
work from the previous one when it is ready to start the next work item.

Odoo supports the pull strategy with the use of kanban states. Each record work item
has a kanban state field signaling its flow status: In progress (gray), Blocked (red), or
Ready (green).

When the work needed in a stage is completed, instead of moving the card to the next
column, it is marked as Ready. This gives a visual indication that the work item is ready
to be pulled by the next stage. Additionally, if something is preventing the work from
moving ahead, it can be marked as Blocked, giving a visual indication that help is needed
to unblock this work item.

376 Kanban Views and Client-Side QWeb

As an example, kanban states are used in the Project Tasks kanban view. In the following
screenshot, we can see the kanban state gray-red-green indicator in the bottom-right of
each card. Also, note the progress bar at the top of each column, which provides a visual
indication of the items in each state:

Figure 11.4 – The project task kanban view with the kanban states

The kanban state is meaningful in each stage, so it should be reset when an item moves to
another stage.

You have now learned about the different views in a kanban board and what they look
like. Now, we will move on to learning how to design them.

Designing kanban views 377

Designing kanban views
The book checkout process can use a kanban view to visualize the work in progress. In this
case, the kanban board columns could represent the checkout stages, and each checkout
could be represented by a card.

This is what the library checkout kanban view will look like when complete:

Figure 11.5 – Library checkouts kanban view

Form views mostly use Odoo-specific XML elements such as <field> and <group>.
They also use some HTML elements such as <h1> or <div>, but their use is limited.
Kanban views are quite the opposite. They are HTML-based and additionally support two
Odoo-specific elements: <field> and <button>.

With kanban views, the final HTML presented in the web client is dynamically generated
from QWeb templates. The QWeb engine processes special XML tags and attributes in the
templates to produce the final HTML. This allows a lot of control of how the content is
rendered, but it also makes the view design more complex.

As a kanban view design is so flexible, different design structures can be used. A good
approach is to find an existing kanban view that would fit well with the use case at hand,
inspect it, and use it as a reference.

378 Kanban Views and Client-Side QWeb

Creating a minimal viable kanban view
Kanban views allow for a rich user interface and can quickly get complex. The first step in
learning how to design kanban views is to create a minimum viable view.

To add a kanban view to the library_checkout module, follow these steps:

1. Add kanban in view_mode of the window action. To do this, edit the views/
library_menu.xml file and update the value set in the view_mode field to
match the following:

 <record id="action_library_checkout"

 model="ir.actions.act_window">

 <field name="name">Checkouts</field>

 <field name="res_model">library.checkout</field>

 <field name="view_mode">

 kanban,tree,form,calendar,pivot,graph,activity

 </field>

 </record>

In the previous code, kanban was added at the beginning of the list to have it as the
default view type.

2. The new kanban view will be added in a new XML file, views/checkout_
kanban_view.xml. So, add this file to the __manifest__.py module in the
data key:

 "data": [

 "security/ir.model.access.csv",

 "views/library_menu.xml",

 "views/checkout_view.xml",

 "views/checkout_kanban_view.xml",

 "wizard/checkout_mass_message_wizard_view.xml"

 ,

 "data/stage_data.xml",

],

3. Finally, add the XML code for a minimal kanban view in the views/checkout_
kanban_view.xml file by using the following code:

<odoo>

Designing kanban views 379

 <record id="library_checkout_kanban"

 model="ir.ui.view">

 <field name="model">library.checkout</field>

 <field name="arch" type="xml">

<kanban>

 <templates>

 <t t-name="kanban-box">

 <div>

 <field name="name" />

 </div>

 </t>

 </templates>

</kanban>

 </field>

 </record>

</odoo>

In the previous code, a kanban view is declared inside a <kanban> element. Kanban
views are described using the QWeb template language. The templates are added inside a
<templates> sub-element.

The main template for each kanban card is described in the <t t-name="kanban-
box"> element. This QWeb template is minimal. It is an HTML <div> element
containing an Odoo-specific <field> widget, which is also used in form and tree views.

This provides a pretty basic kanban view XML structure to start building from. To be a
kanban board, it needs to feature columns for each process stage.

Presenting kanban board columns
Kanban boards present the work items organized in columns, where each column is
a stage in the process. New work items start on the left-hand columns and then travel
through the columns until they arrive at the right-hand side, completed.

Kanban views present items in columns when grouping by a field. For a kanban board, the
view should be grouped by a stage or state field – often, stage_id is used.

380 Kanban Views and Client-Side QWeb

The default_group_by attribute sets a default column group for the kanban view. To
have a kanban board for the book checkouts, edit the <kanban> element to look like this:

<kanban default_group_by="stage_id">

When opening this view, it will be grouped by stage by default (which is similar to Figure
11.4). The user is still able to change the applied group by by using the same group_by
options used for list views.

Understanding kanban view attributes and elements
Kanban views support a few additional attributes to fine-tune their behavior.

The <kanban> top element supports these attributes:

• default_group_by: This sets the field to use for the default column groups.
• default_order: This sets a default order to use for the kanban items.
• quick_create="false": This disables the quick_create option to create

new items by providing just a title description, using the plus sign at the right-hand
side of each column header. The false value is a JavaScript literal and must be in
lowercase.

• quick_create_view: This can optionally be used to set a specific form view
to use for the quick_create function. It should be set with the XML ID of the
form view.

• class: This adds a CSS class to the root element of the rendered kanban view. A
relevant class is o_kanban_small_column, which makes columns somewhat
more compact than the default. Additional classes may be made available through
the CSS assets provided by the module.

• group_create, group_edit, group_delete, and quick_create_view:
These can be set to false to disable the corresponding action on the kanban
columns. For example, group_create="false" removes the vertical Add new
column bar on the right side of the screen.

• records_draggable="false": This disables the ability to drag records
between columns.

The <kanban> element can contain these elements:

• <field>: This is used to declare the fields used by the QWeb templates that
need to be retrieved from the server. This is necessary when those fields are used
in QWeb evaluation expressions. It is not needed for fields used in a template
<field> element.

Designing kanban views 381

• <progressbar>: This element adds a progress bar widget on the group column
headers.

• <templates>: This element is required where the kanban card QWeb templates
are declared.

An example for the <templates> element can be seen in the minimal kanban view
presented previously. An example of the <progressbar> element is provided next.

Adding a progress bar to group columns
A progress bar can show a total number for the column and a colored bar representing
the column record sub-states. The CRM Pipeline page uses it to provide a summary for
the lead activities, from planned to overdue. Another example is the use of kanban states,
as used by the Project Tasks kanban board.

For this, first kanban_state needs to be added to the model, and then, it can be used in
the view. To do so, apply the following steps:

1. Add the field to the library.checkout model, editing the models/library_
checkout.py file as follows:

class Checkout(models.Model):

 kanban_state = fields.Selection(

 [("normal", "In Progress"),

 ("blocked", "Blocked"),

 ("done", "Ready for next stage")],

 "Kanban State",

 default="normal")

2. When changing the stage in the same file at the beginning of the write() method,
add the business logic to reset kanban_state, as follows:

 def write(self, vals):

 # reset kanban state when changing stage

 if "stage_id" in vals and "kanban_state"

 not in vals:

 vals["kanban_state"] = "normal"

 # Code before write ...

 # ...

 return True

382 Kanban Views and Client-Side QWeb

This completes the model changes needed for the time being. Here, we are focusing on
adding the progress bar – the kanban status widget will be added in a later section.

The <progressbar> element is one of the three element types allowed inside a
<kanban> tag, along with <field> and <templates>.

To add it to the <kanban> view definition, edit the element to add the following
highlighted code:

<kanban>

 <progressbar field="kanban_state"

 colors='{

 "done": "success",

 "blocked": "danger",

 "normal": "muted"}'

 sum_fields="num_books"

 />

 <templates>

 <t t-name="kanban-box">

 <div>

 <field name="name" />

 </div>

 </t>

 </templates>

</kanban>

The previous code adds the progress bar widget. The field attribute sets the model field
to use, and the colors attribute maps the field values to the "danger", "warning",
"success", or "muted" colors.

By default, the column total indicator counts the number of items in each column. This
can be changed to be the sum of the values in a model field. In the previous code, the
optional sum_fields attribute was added to present the total number of books in each
column's requests.

At this point, we have a functioning kanban view. However, the kanban cards can display
richer features. The next section focuses on this, where we will further expand the
templates used to render the kanban card content.

Designing kanban cards 383

Designing kanban cards
The design of a kanban card is quite flexible and uses HTML that is produced from QWeb
templates declared in the <templates> element.

The content area will often feature several other areas. Using the CRM Pipeline as a
blueprint, the following sections can be found:

• A title section, with the lead short summary

• A content section, with the amount, customer name, and lead tags

• A left footer section, with the priority and activities widgets

• A right footer section, with the salesperson avatar

• A top-right menu button, which in this case, is visible on mouse hover

This section implements the previous kanban card structure, and it populates each section
to showcase the most important features. The first step for designing kanban cards is to lay
out the kanban card skeleton, which is described next.

Note
The proposed kanban skeleton, as well as certain CSS classes used, is based on
the CRM Pipeline kanban view. Odoo modules can provide specific CSS classes
and use them in the kanban card design. So, these can vary when inspecting
the kanban view templates from different modules.

Organizing the kanban card layout
The kanban card minimal design will now be expanded to a skeleton including several
areas, which we will now describe.

The kanban card is defined inside the <templates> section in an element with
t-name="kanban-box". This can be an HTML element or a QWeb t- directive.
The definition created earlier in this chapter uses the neutral <t> QWeb element: <t
t-name="kanban-box">.

Moving ahead, the kanban view template and the QWeb template should be edited to
mark the areas to be worked on, as shown by the following code:

<kanban>

 <!-- Field list to ensure is loaded ... -->

384 Kanban Views and Client-Side QWeb

 <templates>

 <t t-name="kanban-box">

 <div class="oe_kanban_global_click">

 <div class="o_dropdown_kanban dropdown">

 <!-- Top-right drop down menu ... -->

 </div>

 <div class="oe_kanban_content">

 <div class="o_kanban_record_title">

 <!-- Title area ... -->

 <field name="name" />

 </div>

 <div class="o_kanban_record_body">

 <!-- Other content area ... -->

 </div>

 <div class="o_kanban_record_bottom">

 <div class="oe_kanban_bottom_left">

 <!-- Left side footer... -->

 </div>

 <div class="oe_kanban_bottom_right">

 <!-- Right side footer... -->

 </div>

 </div> <!-- o_kanban_record_bottom -->

 <div class="oe_clear"/>

 </div> <!-- oe_kanban_content -->

 </div> <!-- oe_kanban_global_click -->

</t>

The previous QWeb template code provides a skeleton for all the areas usually seen in
kanban cards.

When the t-name QWeb attribute is used in a <t> element, this element can have only
one child element. This was the case in the preceding code, and the <div> child element
must contain all the other kanban view elements.

Designing kanban cards 385

It is worth noting that this overarching <div> element uses the class="oe_kanban_
global_click" attribute. This makes the card clickable, and when the user does so, the
corresponding form view will be opened in a similar way to what happens with list views.

The next task is to focus on each of the highlighted areas and add content to them.

Adding a title and other content fields
Now that we have a basic kanban card skeleton, the title and additional data can be added.

These will go inside the <div class="oe_kanban_content"> element. The
skeleton being used has sections for these: the <div class="o_kanban_record_
title"> and <div class="o_kanban_record_body"> elements.

The following code expands this section to highlight the card title and add the checkout
request date and the requesting library member ID:

 <div class="o_kanban_record_title">

 <!-- Title area ... -->

 <field name="name" />

 </div>

 <div class="o_kanban_record_body">

 <!-- Other content area ... -->

 <div><fields name="request_date" /></div>

 <div>

 <field name="member_id"

 widget="many2one_avatar"/>

 </div>

 </div>

In this case, regular HTML elements can be used. For example, the element
was used to highlight the title. Also, <field> elements can be used to render field values,
which will be rendered using the appropriate formatting in a similar way to what happens
in form views. In the previous code, request_date uses a <field> element, and so
its content will be rendered using the Odoo-configured date format. It is wrapped in a
<div> element so that there is a line break between several fields.

The member_id many-to-one object is also added by using a specific widget that presents
the corresponding avatar image along with the name, widget="many2one_avatar".

386 Kanban Views and Client-Side QWeb

Now that we have added some basic data elements to the card, let's look at the drop-down
menu area.

Adding the drop-down options menu
Kanban cards can have an options menu on the top-right corner. Common options
include being able to edit or delete the record, set a color for the card, or run any action
that can be called from a button.

The following is the baseline HTML code for the options menu to be added to the top of
the oe_kanban_content element:

 <div class="o_dropdown_kanban dropdown">

 <!-- Top-right drop down menu ... -->

 <a class="dropdown-toggle btn"

 role="button" data-toggle="dropdown"

 title="Dropdown menu" href="#">

 <div class="dropdown-menu" role="menu">

 <!-- Edit menu option -->

 <t t-if="widget.editable">

 <a role="menuitem" type="edit"

 class="dropdown-item">Edit

 </t>

 <!-- Delete menu option -->

 <t t-if="widget.deletable">

 <a role="menuitem" type="delete"

 class="dropdown-item">Delete

 </t>

 <!-- Separator line -->

 <div role="separator" class=

 "dropdown-divider"/>

 <!-- Color picker option: -->

 <ul class="oe_kanban_colorpicker"

Designing kanban cards 387

 data-field="color" />

 <!-- Set as Done menu option -->

 <a t-if="record.state != 'done'"

 role="menuitem" class="dropdown-item"

 name="button_done" type="object">Set

 as Done

 </div>

 </div>

Here, there are QWeb expressions using fields that may not be loaded into the view. In
particular, the last t-if expression uses the record's state field. To ensure this field is
available in the form, it should be added just after the <kanban> element:

<kanban>

 <!-- Field list to ensure is loaded ... -->

 <field name="state" />

Let's break down the drop-down menu code and look at the key elements added:

• The ellipsis icon, in an HTML anchor (<a>) element, to present the menu button.

• A <div class="dropdown-menu" role="menu"> element, containing the
menu options.

• The Edit menu item, which is an <a> element with type="edit".

• The Delete menu item, which is an <a> element with type="delete".

• A separator line, using <div role="separator" class="dropdown-
divider"/>.

• A color picker menu option added with a <ul class="oe_kanban_
colorpicker" /> element. The data-field attribute sets the field used to
store the picked color. This capability will be implemented in the next section, so it
won't work right now.

• A menu item equivalent to a button click, added with an <a> element, featuring the
same name and type attributes used in regular buttons. This particular one uses
name="button_done" type="object".

388 Kanban Views and Client-Side QWeb

Some menu items, such as Edit and Delete, are made available only if certain conditions
are met. This is done with the t-if QWeb directive. This and other QWeb directives are
explained in more detail later in this chapter in the Exploring the QWeb template language
section.

The widget global variable represents a KanbanRecord() JavaScript object, which
is responsible for the rendering of the current kanban card. Two particularly useful
properties are widget.editable and widget.deletable, which allow us to check
whether the corresponding actions are available.

Menu items can be added with additional <a> elements in a similar way to the Set as
Done option.

Menu items can be shown or hidden using a JavaScript expression that can use record
field values. For example, the Set as Done option can be set to only be displayed if the
state field is not set to done.

The color picker menu option uses a special widget that uses a color model field to store
the picked color. While the color selector is available, we did not add the feature to set the
card yet. Let's do this in the next section.

Adding a kanban card color indicator
Kanban cards can be set with a user-selected color. This colors a bar on the left side of the
card and can be useful to easily locate items.

The color to apply is selected using a color picker option on the card's menu. This is added
with a <ul class="oe_kanban_colorpicker" data-field="color"/>
element, as shown in the previous section. The data-field attribute sets the field to
use, which in this case is color.

To add a kanban color card indicator, complete the following steps:

1. Add the color field in the library.checkout model by editing the models/
library_checkout.py file as follows:

class Checkout(models.Model):

...

 color = fields.Integer()

This is a regular integer field. The color picker widget maps the selectable color
to numbers.

Designing kanban cards 389

2. Now, the color field can be used to set a dynamic CSS style on the kanban cards
though QWeb. First, add it to the fields to load by adding the following code:

<kanban>

 <!-- Field list to ensure is loaded ... -->

 <field name="color" />

 <field name="state" />

3. Finally, edit the kanban card top <div> element to add the dynamic color style, as
shown in the following code:

 <t t-name="kanban-box">

 <div t-attf-class="oe_kanban_global_click

 {{!selection_mode ? 'oe_kanban_color_' +

 kanban_getcolor(record.color.raw_value) :

 ''}}">

The preceding code uses t-attf-class to dynamically calculate a CSS class to apply.
A JavaScript expression is declared in a {{ }} block to be evaluated and return a style to
use, which depends on the color field value. This completes the steps to add a kanban
color card indicator.

A few more widgets are available for kanban cards. The next sections show how to use
them, where we will add them to the card footer section.

Adding priority and activity widgets
The priority widget is displayed as a list of stars that can be clicked to select a priority
level. This widget is a <field> element with widget="priority". The priority field
is a Selection field, declaring the several priority levels available.

The library.checkout model needs to be modified to add a priority field. To do this,
complete the following steps:

1. Edit the models/library_checkout.py file as follows:

class Checkout(models.Model):

...

 priority = fields.Selection(

 [("0", "High"),

390 Kanban Views and Client-Side QWeb

 ("1", "Very High"),

 ("2", "Critical")],

 default="0")

The activity widget is an indicator for the item's scheduled activities and is
presented for the activities field (<field name="activity_ids">) with
widget="kanban_activity".

2. Now, the corresponding <field> elements need to be added to the kanban
template on the left side. So, insert the priority widget:

<div class="oe_kanban_footer_left">

 <!-- Left side footer... -->

 <field name="priority" widget="priority"/>

 <field name="activity_ids"

 widget="kanban_activity"/>

</div>

The kanban card now has the priority and activity widgets added to the left side of the
footer. Next, we will add a few more widgets to the right footer.

Adding kanban state and user avatar widgets
The kanban state widget presents a traffic light color for the item. It is a <field> element
using widget="kanban_state_selection".

For related user records, a specific widget is available for this: widget="many2one_
avatar_user".

Examples of both of these will be added to the kanban card right footer, as shown in the
following code:

<div class="oe_kanban_footer_right">

 <!-- Right side footer... -->

 <field name="kanban_state"

 widget="kanban_state_selection" />

 <field name="user_id"

 widget="many2one_avatar_user" />

</div>

The kanban state is added using a <field> element with the kanban_state_
selection widget.

Exploring the QWeb template language 391

The user avatar image is added with the user_id field, using the widget="many2one_
avatar_user" widget.

One more important topic is using actions on kanban cards, which we will discuss in the
following section.

Using actions in kanban view elements
In QWeb templates, the <a> tag for links can have a type attribute. This sets the type of
action the link will perform so that links can act just like buttons in regular forms. So, in
addition to the <button> elements, the <a> tags can also be used to run Odoo actions.

As is the case in form views, the action type can be set to action or object and
should be accompanied by a name attribute that identifies the specific action to execute.
Additionally, the following action types are also available:

• open: This opens the corresponding form view.

• edit: This opens the corresponding form view directly in edit mode.

• delete: This deletes the record and removes the item from the kanban view.

This completes our walkthrough of designing kanban views. Kanban views use the QWeb
template language, and a few examples were used here. The next section takes a deep dive
into QWeb.

Exploring the QWeb template language
The QWeb parser looks for special directives in the templates and replaces them with
dynamically generated HTML. These directives are XML element attributes and can be
used in any valid tag or element – for example, <div>, , or <field>.

Sometimes, a QWeb directive needs to be used, but we don't want to place it in any of the
XML elements in the template. For these cases, the <t> special element can be used. It can
have QWeb directives such as t-if or t-foreach, but it is silent, and it won't have any
effect on the final XML/HTML produced.

The QWeb directives frequently use evaluated expressions to produce different effects
that depend on record values. The language used to evaluate these expressions depends
on the environment where the QWeb is being executed. There are two different QWeb
implementations: client-side JavaScript and server-side Python. Reports and website
pages use the server-side Python implementation of QWeb.

392 Kanban Views and Client-Side QWeb

Kanban views use the client-side JavaScript implementation. This means that the QWeb
expression used in kanban views should be written using the JavaScript syntax, not
Python.

When displaying a kanban view, the internal steps are roughly as follows:

1. Get the XML for the templates to render.
2. Call the server read() method to get the data for the fields used in the templates.
3. Locate the kanban-box template and parse it using QWeb to output the final

HTML fragments.
4. Inject the HTML in the browser display (the Document Object Model (DOM)).

This is not meant to be technically exact. It's just a mind map that can be useful to
understand how things work in kanban views.

Next, we'll learn about QWeb expression evaluation and explore the available QWeb
directives, using examples that will enhance the checkout kanban card.

Understanding the QWeb JavaScript evaluation
context
Many of the QWeb directives use expressions that are evaluated to produce some result.
When used on the client side (as is the case for Kanban views), these expressions are written
in JavaScript. They're evaluated in a context that has a few useful variables available.

A record object is available, representing the current record, with the fields requested
from the server. The field values can be accessed using either the raw_value or value
attributes:

• raw_value: This is the value returned by the read() server method, so it's more
suitable for use in condition expressions.

• value: This is formatted according to the user settings and is meant to be used
for display in the user interface. This is typically useful for date, datetime, float,
monetary, and relational fields.

Exploring the QWeb template language 393

The QWeb evaluation context can also reference the JavaScript web client instance. To
make use of that, a good understanding of the web client architecture is needed. In this
chapter, we won't be able to go into detail regarding this. However, for reference purposes,
the following identifiers are available in QWeb expression evaluation:

• widget: This is a reference to the current KanbanRecord() widget object and
is responsible for the rendering of the current record into a kanban card. It exposes
some helper functions we can use.

• record: This is a shortcut for widget.record and provides access to the fields
available, using dot notation.

• read_only_mode: This indicates whether the current view is in read mode
(and not in edit mode). It's a shortcut for widget.view.options.read_
only_mode.

• instance: This is a reference to the full web client instance.

Since QWeb templates are written in XML files, there are limitations on the usage of
some characters not accepted by the XML format (such as the lower than sign (<)). When
these characters are needed – for example, to describe JavaScript expressions – escaped
alternatives need to be used.

These are the alternative symbols that are available for inequality operations:

• < is for less than (<).

• <= is for less than or equal to (<=).

• > is for greater than (>).

• >= is for greater than or equal to (>=).

The preceding comparison symbols are not specific to Odoo and are part of the XML
format standards.

The previous symbols can be used in QWeb evaluated expressions, and they are often
used to calculate text to render for the t-out directive, which we will describe in the
following section.

394 Kanban Views and Client-Side QWeb

Using t-out to render values
The <field> element is available to render field values, with the advantage of Odoo
taking care of properly formatting the output for us. But this has the limitation of only
displaying the field content.

However, the t-out directive can render the result of a code expression as an HTML-
escaped value:

<t t-out="'Requested on ${record.request_date.value}'" />

The preceding code renders the result of a JavaScript expression. The record represents
the record retrieved from the Odoo server and provides access to the fields. The value
property returns properly formatted content, as returned by a <field> element. The
raw_value property returns the unformatted native value.

Changes in Odoo 15
The t-out directive was introduced in Odoo 15, and it replaces the
discontinued t-esc directive, used until Odoo 14. The t-raw directive was
also discontinued. This was previously used to render the raw value without
escaping any HTML, and using it carries security risks.

Using t-set to assign values to variables
For more complex logic, the result of an expression can be stored into a variable to use later
in the template. This is to be done using the t-set directive for the variable name to be set,
followed by the t-value directive with the expression to calculate the value to be assigned.

As an example, the following code renders the title in red if the request has no lines yet.
It uses a red_or_black variable for the CSS class to use, shown as follows:

<t t-set="red_or_black"

 t-value="record.num_books == 0 ? '' :

 'oe_kanban_text_red'"

/>

<strong t-att-class="red_or_black">

 <field name="name" />

The previous example has a code expression using the num_books field, so we need to
ensure it is loaded by adding a <field name="num_books" /> element inside the
<kanban> top element.

Exploring the QWeb template language 395

Variables can also be assigned HTML content, as in the following example:

<t t-set="calendar_sign">

 <i class="fa fa-calendar" title="Calendar" />

</t>

<t t-out="calendar_sign" />

The previous code assigns the HTML inside to the calendar_sign variable and then
renders it using the t-out directive.

Using t-attf- for string substitution of dynamic
attributes
Our kanban card is using the t-attf- QWeb directive to dynamically set a class in the
top <div> element so that the card color depends on the color field value. For this, the
t-attf- QWeb directive was used.

The t-attf- directive dynamically generates tag attributes using string substitution.
This allows for parts of larger strings to be generated dynamically, such as URLs or CSS
class names.

The directive looks for expression blocks that will be evaluated and replaced by the results.
These are delimited either by {{ and }} or by #{ and }. The content of the blocks can
be any valid JavaScript expression and can use any of the variables available for QWeb
expressions, such as record and widget.

In this case, the kanban_color() JavaScript function was used. This is specifically
provided to map color index numbers into the CSS class color names.

As an elaborate example, this directive will be used to dynamically change the color
of the request date to be in red letters if the priority is high. For this, the <field
name="request_date"/> element in the kanban card should be replaced with
the following:

<div t-attf-class="oe_kanban_text_{{

 record.priority.raw_value < '2'

 ? 'black' : 'red' }}">

 <field name="request_date"/>

</div>

396 Kanban Views and Client-Side QWeb

This results in either class="oe_kanban_text_red" or class="oe_kanban_
text_black", depending on the priority value. This is evaluated dynamically – that
means that when the user clicks on the priority widget to change it, the date color will
immediately change.

Using t-att- for expressions calculated by dynamic
attributes
The t-att- QWeb directive can dynamically generate an attribute value from an
expression evaluation.

For example, the formatting effect from the previous section that used the t-attf-
attribute could alternatively be implemented using t-att-. The following code shows
this alternative implementation:

<div t-att-class="record.priority.raw_value < '2'

 ? 'oe_kanban_text_black' : 'oe_kanban_text_red'">

 <field name="request_date"/>

</div>

When the expression evaluates to a false-equivalent value, the attribute is not rendered at
all. This is important for special HTML attributes such as the checked input field.

Using t-foreach for loops
Iterating through loops is useful to repeat a particular HTML block. For this, the
t-foreach directive is used with an expression returning an iterable value. It needs to
be accompanied by a t-as directive, which sets the variable name for the iteration value.

This could be used to present the book titles requested in the checkout. This requires a
loop on the lines_ids field.

Note that the accessible values for the line_ids elements are database IDs and not
record objects. This can be confirmed by adding the following code in the <!-- Other
content area --> area:

<div>

 <t t-foreach="record.line_ids.raw_value" t-as="line">

 <t t-out="line" />;

 </t>

</div>

Exploring the QWeb template language 397

The t-foreach directive accepts a JavaScript expression evaluating to a collection to
iterate. record.<field>.value returns a representation of a string for the field value,
and record.<field>.raw_value returns the database-stored values. For a to-many
field, this is a list of IDS:

• The t-as directive sets the variable name to be used to refer to each iteration value.

• The t-out directive evaluates the provided expression – in this case, just the line
variable name – and renders safely escaped HTML.

Presenting the record IDs is not very interesting. However, we do have a JavaScript
function available to retrieve an image for an ID: kanban_image().

To use this, first, the checkout lines need to support an image. For this, the models/
library_checkout_line.py file should be edited to add a field for the book
cover image:

 book_cover = fields.Binary(related="book_id.image")

Now, this field can be used in the kanban card:

<div>

 <t t-foreach="record.line_ids.raw_value" t-as="line">

 <t t-out="line" />;

 <img t-att-src="kanban_image(

 'library.checkout.line', 'book_cover', line)"

 class="oe_avatar" height="60" alt="Cover" />

 </t>

</div>

The previous code renders an image for the book title in each checkout line.

If there are many lines, this might be too much content for the kanban card. Since the
t-foreach object is a JavaScript expression, it can use additional syntax to limit the
number of the allowed cover thumbnails. JavaScript arrays have a slice() method to
extract a subset of elements.

This can be used to limit the number to the first five elements by using the following
variation of the for loop:

<t t-foreach="record.line_ids.raw_value.slice(0, 5)"
t-as="line>

398 Kanban Views and Client-Side QWeb

The for loops have a few helper variables available. These variables are automatically
generated and are prefixed by the variable name defined in t-as.

If t-as="rec" is used, where rec is set as the variable name, the helper variables would
be as follows:

• rec_index: This is the iteration index, starting from zero.

• rec_size: This is the number of elements of the collection.

• rec_first: This is true on the first element of the iteration.

• rec_last: This is true on the last element of the iteration.

• rec_even: This is true on even indexes.

• rec_odd: This is true on odd indexes.

• rec_parity: This is either odd or even, depending on the current index.

• rec_all: This represents the object being iterated over.

• rec_value: This holds the value when iterating through a {key:value}
dictionary (rec holds the key name).

For example, when presenting a list of comma-separated values, we would like to avoid
a trailing comma. Avoiding rendering it on the last iteration is easy with the help of the
_last loop variable. Here is an example of this:

<t t-foreach="record.line_ids.raw_value" t-as="rec">

 <t t-out="rec" />

 <t t-if="!rec_last">;</t>

</t>

The rec_last variable is true on the last record. Negating it with !rec_last enables
printing the comma on all iterations except the last one.

Using t-if to apply conditions
The t-if directive expects an expression to be evaluated in JavaScript when rendering
kanban views on the client side. The tag and its content will be rendered only if the
condition evaluates to true.

In our example, it was used in the checkout kanban view to have menu options available
depending on some conditions.

Exploring the QWeb template language 399

To take another example, we can display the checkout number of books borrowed, but
only if the view has any lines. This can be confirmed by adding the following code in the
<!-- Other content area --> area:

<div> t-if="record.num_books.raw_value > 0">

 <field name="num_books"/> books

</div>>

Here, we used a t-if="<expression>"> attribute to render an element and its
content only when the expression used evaluated to true. Notice that the condition
expression uses the > symbol instead of > to represent the greater-than operation.

The else if and else conditions are also supported with the t-elif and t-else
directives. Here is an example of their use:

<div t-if="record.num_books.raw_value == 0">

 No books!

</div>

<div t-elif="record.num_books.raw_value == 1">

 One book

</div>

<div t-else="">

 <field name="num_books"/> books

</div>

These conditions are useful to render particular elements on particular cases.

Another useful feature is the ability to decompose templates into smaller reusable snippets
that can be included using t-call. The following section explains how this works.

Using t-call to call and reuse templates
Instead of repeating the same HTML blocks over and over again, building blocks can
be used to compose more complex user interface views. QWeb templates can be used as
reusable HTML snippets that are inserted into other templates.

Reusable templates are defined inside the <templates> tag and identified by a top
element with t-name other than kanban-box. These other templates can then be
included using the t-call directive. This is true for the templates declared in the same
kanban view, somewhere else in the same addon module, or even in a different addon.

400 Kanban Views and Client-Side QWeb

As an example, the book cover list could be isolated in a reusable snippet. For this, another
template can be added in the <templates> element after the <t t-name="kanban-
box"> node, as shown in the following example:

<t t-name="book_covers">

 <div>

 <t t-foreach="record.line_ids.raw_value" t-as="line">

 <t t-out="line" />;

 <img t-att-src="kanban_image(

 'library.checkout.line', 'book_cover', line)"

 class="oe_avatar" height="60" alt="Cover" />

 </t>

 </div>

</t>

Then, the t-call directive can be used to call this template in the kanban-box main
template:

<t t-call="book_covers" />

To call templates defined in other addon modules, the module.name full identifier must
be used, in a similar way to what happens with other views. For instance, this snippet can
be referred to in another module using the library_checkout.book_covers full
identifier.

The called template runs in the same context as the caller, so any variable names available
in the caller are also available when processing the called template.

A more elegant alternative is to pass arguments to the called template. This is done by
setting variables inside the t-call tag. These will be evaluated and made available in the
sub-template context only, and they won't exist in the caller context.

As an example, the books_cover template could have an argument to set the maximum
number of covers to display instead of being hardcoded in the sub-template. First, the
book_covers template should be edited to replace the fixed limit with a variable, such
as limit:

<t t-name="book_covers">

 <div>

 <t t-foreach="record.line_ids.raw_value.slice(0,

Exploring the QWeb template language 401

 limit)"

 t-as="line">

 <t t-out="line" />;

 <img t-att-src="kanban_image(

 'library.checkout.line', 'book_cover', line)"

 class="oe_avatar" height="60" alt="Cover" />

 </t>

 </div>

</t>

Now, t-call must set this variable using a nested t-set directive, as shown in the
following code:

<t t-call="book_covers">

 <t t-set="limit" t-value="3" />

</t>

The entire content inside the t-call element is also available to the sub-template
through the 0 magic variable. Instead of argument variables, an HTML code fragment
could be added inside the t-call element, and then it could be used in the called
template with <t t-out="0" />. This is especially useful for building layouts and
combining/nesting QWeb templates in a modular way.

Using dictionaries and lists to dynamically set
attributes
We've gone through the most important QWeb directives, but there are a few more to be
aware of. Now, we'll give a short explanation of them.

Here, the t-att-NAME and t-attf-NAME style dynamic tag attributes were introduced.
Additionally, the fixed t-att directive can be used. It accepts either a key-value
dictionary mapping or a pair (that is, a two-element list).

For example, consider the following mapping:

<p t-att="{'class': 'oe_bold', 'name': 'Hello'}" />

The preceding code produces this result:

<p class="oe_bold" name="Hello" />

402 Kanban Views and Client-Side QWeb

t-att can also work with a list or with pairs of values. For example, consider the
following:

<p t-att="['class', 'oe_bold']" />

The preceding code produces this result:

<p class="oe_bold" />

These special ways to assign attributes to elements can be useful in cases where there is
some server-side processing, and a resulting dictionary or list can be used on a single
t-att element to be applied on a template element.

This completes a reasonable overview of the QWeb template language with a special focus
on kanban view applications, although the QWeb language is also used on the server side
– for example, it can be used for reports and website pages.

Not surprisingly, QWeb templates provide an extension mechanism. We will explore this
in the next section.

Extending kanban views
The templates used in kanban views and reports can be extended in the same way other
view types are extended: that is, declare the element to match, possibly using an XPath
expression, and use the position attribute to set what the extensions should do (for
example, add the new elements after of before the matched element). These techniques are
explained in detail in Chapter 4, Extending Modules.

In practice, kanban views and QWeb templates are more complex than the regular form
view, and matching the elements to extend can be tricky.

Using <field> elements as selectors can be difficult. It is common for the same field
name to be included more than once in a kanban view: at the beginning, in the field list to
load, and then again inside the kanban box template. Since the selector will match the first
field element found, the modification won't be applied inside the template, as intended.

For example, the //t[@t-name='kanban-box']//field[@name='name'] XPath
expression locates any child elements matching <t t-name="kanban-box">, and
then it finds any further child elements matching <field name="name">.

Another challenge is the frequent use of HTML elements with no clear identifier, such
as <div> or . In these cases, XPath expressions with non-trivial matching
conditions are needed. For example, the //div/t/img XPath expression matches a
<div><t> nested sequence of elements.

Extending kanban views 403

The following is an example that extends the Contacts kanban view:

<record id="res_partner_kanban_inherit" model="ir.ui.view">

 <field name="name">Contact Kanban modification</field>

 <field name="model">res.partner</field>

 <field name="inherit_id"

 ref="base.res_partner_kanban_view" />

 <field name="arch" type="xml">

 <xpath

 expr="//t[@t-name=

 'kanban-box']//field[@name='display_name']"

 position="before">

 Name:

 </xpath>

 </field>

</record>

In the previous example, XPath looks for a <field name="display_name"> element
inside a <t t-name="kanban-box"> element. This rules out the same field element
outside of the <templates> section.

For complex XPath expressions, some command-line tools can be helpful to explore the
correct syntax to use.

The xmllint command-line utility – from the libxml2-utils Debian/Ubuntu
package – has an --xpath option to perform queries on XML files. Here is an example
of using it:

$ xmllint --xpath "//templates//field[@name='name']" library_
checkout/views/checkout_view.xml

Another option is the xpath command, from the libxml-xpath-perl Debian/
Ubuntu package. Here is an example of using it:

$ xpath -e "//templates//field[@name='name']" library_checkout/
views/checkout_view.xml

These tools can be useful to quickly try and test XPath expressions on an XML file.

Until now, you have seen how to create and extend kanban views. However, these can
make use of additional JavaScript and CSS assets for effects. The next section explains how
to add these components.

404 Kanban Views and Client-Side QWeb

Adding CSS and JavaScript assets
Kanban views are mostly HTML and make significant use of CSS classes. In this chapter,
some standard CSS classes were introduced in the code examples, but modules can also
provide their own CSS.

The generally used convention is to have the asset files inside the /static/src
subdirectory.

Module web assets are declared in a manifest file in the assets key. This file is set with
a dictionary that maps the assets bundle to be extended and the list of assets to add to it.

This provides the tool to add web assets to an Odoo module, such as CSS and JavaScript
assets. These web asset files provide a structured way to better provide user interface
elements for a richer user experience.

They can then be used in the module's QWeb templates, as discussed throughout the
previous sections in this chapter.

Here is an example for the library_checkout addon module. Edit the __
manifest__.py file to add the following:

 "assets": {

 "web.assets_backend": {

 "library_checkout/static/src/css/checkout.css",

 "library_checkout/static/src/js/checkout.js",

 }

 }

The previous code adds a CSS and JavaScript file to the web.assets_backend
assets bundle.

The main asset bundles available are as follows:

• web.assets_common: This contains the assets common to the web client,
website, and also the point of sale.

• web.assets_backend: This contains the assets specific to the backend web
client.

• web.assets_frontend: This contains the assets to be made available for the
public website.

The assets manifest key was introduced in Odoo 15. For previous Odoo versions, assets
were declared using XML template inheritance. We will explain this next.

Summary 405

Adding assets before Odoo 15
In previous Odoo versions, assets were added using an XML file that extends the
asset bundle. The XML file doing this was usually placed inside the views/ module
subdirectory.

The following example adds a CSS and JavaScript file to the library_checkout
module. Add the views/assets.xml file with the following code:

<odoo>

 <template id="assets_backend"

 inherit_id="web.assets_backend"

 name="Library Checkout Kanban Assets" >

 <xpath expr="." position="inside">

 <link rel="stylesheet"

 href="/library_checkout/static/src/css/checkout.css"

 />

 <script type="text/javascript"

 src="/library_checkout/static/src/js/checkout.js">

 </script>

 </xpath>

 </template>

</odoo>

As usual, this code should also be added to the data key in the __manifest__.py
descriptor file.

Summary
This chapter covered kanban views and demonstrated how they can act as a powerful user
interface tool. By now, you should understand kanban boards, and you are equipped with
the techniques needed to design kanban views.

In this chapter, you also explored the QWeb template language that powers kanban views.
With the help of the examples in this chapter, you should now know how to use its features.

As is expected for Odoo, kanban views and QWeb templates can also be extended by
other modules in a similar way to other view types. Having read this chapter, you know
additional techniques to use this functionality on Kanban views.

406 Kanban Views and Client-Side QWeb

Finally, we also discussed the use of CSS and JavaScript assets in advanced kanban views.
We also looked at how these assets must be provided by the modules and must be added
to the backend assets. You now know how to implement this.

The next chapter will continue exploring QWeb, but this time, we'll focus on the server
side and see how to design printable reports.

Further reading
The following reference materials complement the topics discussed in this chapter:

• The official Odoo documentation on QWeb: https://www.odoo.com/
documentation/15.0/developer/reference/frontend/qweb.html

• The Bootstrap CSS documentation: https://getbootstrap.com/
docs/4.1/getting-started/introduction/

• The Font Awesome icon index: https://fontawesome.com/v4.7.0/
icons/

12
Creating Printable

PDF Reports with
Server-Side QWeb

While a regular view can provide valuable information to users, there will be cases where a
printed output is needed. Maybe it is a PDF document to be sent to a customer, or a paper
document that is needed to support a physical process. To address these cases, Odoo apps
support printed business reports. These are generated using QWeb and then exported to
PDF documents, which can then be printed, emailed, or simply stored.

Being QWeb-based means that the same skills that can be used for Kanban views and
web pages can be reused to design reports. Beyond QWeb, specific mechanisms are used,
such as report actions, paper formats, and the variables that are available for QWeb report
rendering.

In this chapter, examples will be used to illustrate how to structure and add content to a
report. The usual report structure has a header, details, and footer sections. The content
that can be added includes field data, including specific widgets such as images. Also
common in reports is the need to present totals. All of these will be explained in detail in
this chapter.

408 Creating Printable PDF Reports with Server-Side QWeb

The following topics will be covered in this chapter:

• Installing wkhtmltopdf

• Creating business reports

• Designing report content

• Creating custom reports

By the end of this chapter, you will be familiar with all the steps needed to create Odoo
reports, from report action to specific techniques that can be used on QWeb templates.

Technical requirements
This chapter expands the existing library_app add-on module, based on the code first
created in Chapter 3, Your First Odoo Application. This chapter's code can be found in this
book's GitHub repository at https://github.com/PacktPublishing/Odoo-15-
Development-Essentials in the ch12/ subdirectory.

Installing wkhtmltopdf
Odoo reports are just HTML pages that are then converted into PDF files. For this
conversion, the wkhtmltopdf command-line tool is used. Its name stands for Webkit
HTML to PDF.

For reports to be generated correctly, the recommended version of the wkhtmltopdf
utility needs to be installed. Some versions of the wkhtmltopdf library are known to
have issues, such as not printing page headers and footers, so we need to be picky about
the version we use.

Since Odoo 10, version 0.12.5 is the officially recommended one. The most up-to-date
Odoo information about wkhtmltopdf can be found at https://github.com/
odoo/odoo/wiki/Wkhtmltopdf.

The packaged version provided by Debian or Ubuntu may not be appropriate. So, the
recommendation is to directly download and install the correct package. The download
links can be found at https://github.com/wkhtmltopdf/wkhtmltopdf/
releases/tag/0.12.5.

https://github.com/PacktPublishing/Odoo-15-Development-Essentials
https://github.com/PacktPublishing/Odoo-15-Development-Essentials
https://github.com/odoo/odoo/wiki/Wkhtmltopdf
https://github.com/odoo/odoo/wiki/Wkhtmltopdf
https://github.com/wkhtmltopdf/wkhtmltopdf/releases/tag/0.12.5
https://github.com/wkhtmltopdf/wkhtmltopdf/releases/tag/0.12.5

Installing wkhtmltopdf 409

To install the correct version of wkhtmltopdf, follow these steps:

1. First, make sure that there isn't an incorrect version already installed on the system
by inputting the following command:

$ wkhtmltopdf --version

2. If the preceding command reports a version other than the recommended one,
it should be uninstalled. To do so, on a Debian/Ubuntu system, input the
following command:

$ sudo apt-get remove --purge wkhtmltopdf

3. Next, you need to download the appropriate package for your system and install it.
Check the release page for the correct download link. At the time of the Odoo 15
release, Ubuntu 20.04 LTS Focal Fossa is the latest long-term support version. For
a 64-bit architecture, install the wkhtmltox_0.12.5-1.focal_amd64.deb
package. The download command to use in this case is as follows:

$ wget "https://github.com/wkhtmltopdf/wkhtmltopdf/
releases/download/0.12.5/wkhtmltox_0.12.5-1.focal_amd64.
deb" -O /tmp/wkhtml.deb

4. Next, install the downloaded package with the following command:

$ sudo dpkg -i /tmp/wkhtml.deb

This may display an error because of missing dependencies. In that case, the
following command can be used to fix this:

$ sudo apt-get -f install

5. Finally, verify that the wkhtmltopdf library is correctly installed with the
intended version number with the following command:

$ wkhtmltopdf --version

wkhtmltopdf 0.12.5 (with patched qt)

With this, you have successfully installed the correct version of wkhtmltopdf and now
the Odoo server log won't display the You need Wkhtmltopdf to print a pdf version of
the report information message during the startup sequence.

Now that you know how to download and install a suitable version of the wkhtmltopdf
tool, let's look at how to create business reports.

410 Creating Printable PDF Reports with Server-Side QWeb

Creating business reports
It would be helpful for the Library app to print out a report containing the book catalog.
This report should list the book titles, along with details such as publisher, publishing
date, and authors.

We will implement this throughout this chapter, and in the process showcase the several
techniques involved in implementing Odoo reports. The report will be added to the
existing library_app module.

The convention is to have report files in a /reports subdirectory, so a reports/
library_book_report.xml data file will be added. As usual, when adding data files,
remember to also declare them in the data key of the __manifest__.py file.

To be able to run a report, the first thing we must add is the report action.

Adding the report action
The report action triggers the execution of a report, similarly to how window actions
trigger web client view presentations. A report action is a record in the ir.actions.
report XML model, and it can be inspected by using the Settings | Technical | Actions |
Reports menu option.

Changes in Odoo 14
Odoo 14 deprecated the <report> shortcut tag for report actions. A
<record model=""ir.actions.report"> element should be used
instead.

To add the report action and trigger the execution of the report, edit the reports/
library_book_report.xml file, as follows:

<odoo>

 <record id="action_library_book_report"

 model="ir.actions.report">

 <field name="name">Book Catalog</field>

 <field name="model">library.book</field>

 <field name="report_type">qweb-pdf</field>

 <field name="report_name">

 library_app.book_catalog</field>

 <field name="binding_model_id"

 ref="model_library_book" />

Creating business reports 411

 <field name="binding_type">report</field>

 </record>

</odoo>

This report action makes this report available at the top of the Library Books view, on the
Print button, next to the Action button:

Figure 12.1 – The Print context button

This marks the first step of having a report available to users.

The essential fields that were used in the previous code are as follows:

• name is the report action's title.

• model is the technical name of the report's base model.

• report_type is the type of document to generate. The options are qweb-pdf,
qweb-html, or qweb-text.

• report_name is the XML ID of the QWeb template to be used to generate the
report's content. Unlike other identifier references, it must be a complete reference
that includes the module name; that is, <module_name>.<identifier_
name>.

Tip
While working on report development, setting report_type to qweb-
html allows you to inspect the HTML result that's generated by the QWeb
template, and it also makes it easier to troubleshoot issues. When you've done
this, it can be changed back to qweb-pdf.

412 Creating Printable PDF Reports with Server-Side QWeb

The following fields are not required to add the report action, but are needed for the
report to be presented in the Print menu, next to the Action menu:

• binding_model_id is a many-to-one field for identifying the model where the
report print option should be available.

• binding_type should be set to report.

The other optional fields are as follows:

• print_report_name is a Python expression that's used to provide the report's
title and filename. The object variable is available and represents the current
record.

• attachment is a Python expression where you have to generate the attachment
filename. The object variable is available and represents the current record. When
set, the generated report is stored as an attachment.

• attachment_use, when set to True, means that new report generations reopen
the stored original report instead of regenerating it.

• paperformat_id is a many-to-one field for the paper format to use. Paper
formats include the page size and the portrait or landscape orientation.

• groups_id is a many-to-many field with the security groups that can use the
report.

• multi, when set to True, means that the report is not available in the form view.

These actions won't work right now since the referenced QWeb template is missing. We'll
deal with this in the following sections.

Using a QWeb report template for per-record
documents
Odoo reports are generated using QWeb templates. QWeb generates HTML that can then
be converted into a PDF document. QWeb directives and flow controls can be used as
usual, but specific containers should be used to ensure proper page formatting.

The following example provides a minimum viable template for a QWeb report. Add the
following code to the reports/library_book_report.xml file, just after the report
action element that we added in the previous section:

<template id="book_catalog">

 <t t-call="web.html_container">

Creating business reports 413

 <t t-call="web.external_layout">

 <t t-foreach="docs" t-as="o">

 <div class="page">

 <!-- Report content -->

 </div>

 </t>

 </t>

 </t>

</template>

The most important elements here are the t-call directives that are using standard
report structures. The web.html_container template does the basic setup to support
an HTML document. The web.external_layout template handles the report header
and footer using the corresponding company setup. The web.internal_layout
template can be used as an alternative, featuring only a basic header; it's better suited for
internal use reports.

Changed Since Odoo 11
In Odoo 11, the report layouts moved from the report module to the web
module. Previous Odoo versions used report.external_layout or
report.internal_layout references. Starting with Odoo 11, these
need to be changed to web.<...> references.

The docs variable represents the base record set to generate the report. The report will
typically use a t-foreach QWeb directive to iterate through each record. The previous
report template generates a report header and footer for each record.

Notice that, since reports are just QWeb templates, inheritance can be applied, just like in
the other views. QWeb templates that are used in reports can be extended using regular
template inheritance – that is, using XPath expressions – as we will discuss next.

Using a QWeb report template for record listings
In the case of the book catalog, there is a single report document, with a header and a
footer, containing a line or section for each record.

414 Creating Printable PDF Reports with Server-Side QWeb

So, the report template needs to be adjusted for this, as shown in the following code:

<template id="book_catalog">

 <t t-call="web.html_container">

 <t t-call="web.external_layout">

 <div class="page">

 <!-- Report header content -->

 <t t-foreach="docs" t-as="o">

 <!-- Report row content -->

 </t>

 <!-- Report footer content -->

 </div> <!-- page -->

 </t>

 </t>

</template>

In the previous code, the <div class="page"> element was moved before <t
t-foreach="docs"> so that a single report header and footer are printed, and the
individual records will print additional content inside the same document.

Now that we have the basic report template, we can customize the report layout, which we
will do next.

Choosing a report layout
The report layout can be customized by users. This will be applied to the report, so long as
it uses external_layout.

The options for this are available from the Settings | General Settings menu, in the
Companies | Document Layout section, as shown in the following screenshot:

Creating business reports 415

Figure 12.2 – Document layout configuration options

Here, the Configure Document Layout button opens a report template configurator,
provides a few layout options, and allows you to make selections regarding the company
logo, colors, or text font.

The selected layout can be set on the settings Layout field, and Edit Layout opens the
corresponding view form, allowing you to directly customize the layout's QWeb XML
definition.

Now that you know how to set up the general report layout, let's look at how to work with
page formats.

Setting a paper format
Odoo proposes a few page formats out of the box, including European A4 and US Letter.
Additional page formats can be added, including those for specific page orientations.

Paper formats are stored in the report.paperformat model. The existing formats can
be inspected using the Settings | Technical | Reporting | Paper Format menu option.

For the book catalog report, a landscape orientation will be used, and a new page format
will be added for this.

416 Creating Printable PDF Reports with Server-Side QWeb

To add the A4 Landscape paper format, add the following data record at the beginning of
the reports/library_book_report.xml file:

<record id="paperformat_euro_landscape" model="report.
paperformat">

 <field name="name">A4 Landscape</field>

 <field name="format">A4</field>

 <field name="orientation">Landscape</field>

 <field name="margin_top">40</field>

 <field name="margin_bottom">32</field>

 <field name="margin_left">7</field>

 <field name="margin_right">7</field>

 <field name="header_line" eval="False" />

 <field name="header_spacing">35</field>

 <field name="dpi">90</field>

</record>

This is a copy of the European A4 format, defined by the base module, in the data/
report_paperformat_data.xml file, with the orientation changed from portrait
to landscape.

This paper format can now be used for reports. The default paper format is defined in the
company setup, but reports can set specific paper formats to be used. This can be done
using the paperfomat_id field in the report action.

The report action can be edited to add this field:

 <record id="action_library_book_report"

 model="ir.actions.report">

 <field name="name">Book Catalog</field>

 <field name="model">library.book</field>

 <field name="report_type">qweb-pdf</field>

 <field name="report_name">

 library_app.book_catalog</field>

 <field name="paperformat_id"

 ref="paperformat_euro_landscape" />

 </record>

With the basic skeleton for the report in place, it is time to start designing the report content.

Designing report content 417

Designing report content
The report content is written in HTML and makes use of Bootstrap 4 to help design the
report's layout. Bootstrap is widely used in web development.

Tip
A complete reference can be found at http://getbootstrap.com.

Unlike Kanban views, the report QWeb templates are rendered on the server side and
use the Python QWeb implementation. So, there are some differences to be aware of,
compared to the JavaScript QWeb implementation. QWeb expressions are evaluated using
Python syntax, not JavaScript.

Understanding the report rendering context
The server-side context where expressions are evaluated is also different from the client-
side context that's used for Kanban views. On a report template, the following variables
are available:

• docs is an iterable collection with the records to render the report for.

• doc_ids is a list of the IDs of the records to render the report for.

• doc_model identifies the model of the records; for example, library.book.

• user is the record for the user running the report.

• res_company is the record for the current user's company.

• website is the record for the current website, if any. This could be None.

• web_base_url is the base address of the Odoo server.

• time is a reference to Python's time library.

• context_timestamp is a function that takes a datetime object in UTC and
converts it into the user's time zone.

• These values and Python libraries can be used in code expressions inside the
template. For example, to print out the current user, we could use the following
command:

The docs value is particularly important since it contains the data to be used for the report.

http://getbootstrap.com

418 Creating Printable PDF Reports with Server-Side QWeb

Now that you know how to access the data for the report, the next step is to add the
report content.

Adding the report content
With the basic QWeb template, including its header, details, and footer, in place, you can
now add content to it.

Here is the XML you must use to render the report header. It should be placed inside the
<div class="page"> node and before the <t t-foreach=...> element:

<div class="page">

 <!-- Report header content -->

 <div class="container">

 <div class="row bg-primary">

 <div class="col-3">Title</div>

 <div class="col-2">Publisher</div>

 <div class="col-2">Date</div>

 <div class="col-3">Publisher Address</div>

 <div class="col-2">Authors</div>

 </div>

 <t t-foreach="docs" t-as="o">

 <div class="row">

 <!-- Report row content -->

 </div>

 </t>

 <!-- Report footer content -->

 </div> <!-- container -->

</div> <!-- page -->

This content layout uses the Bootstrap 4 grid system, which was added with the <div
class="container"> element. Bootstrap has a grid layout with 12 available
columns. More details on Bootstrap can be found at https://getbootstrap.com/
docs/4.1/layout/grid.

https://getbootstrap.com/docs/4.1/layout/grid
https://getbootstrap.com/docs/4.1/layout/grid

Designing report content 419

Changes in Odoo 12
Odoo used Bootstrap 3 until Odoo 11 and started using Bootstrap 4 from
Odoo 12. Bootstrap 4 is not backward compatible with Bootstrap 3. For tips
on the changes from Bootstrap 3 to Bootstrap 4, see the Odoo wiki page on
this topic: https://github.com/odoo/odoo/wiki/Tips-and-
tricks:-BS3-to-BS4.

The previous code adds a header row with column titles. After this, there is a t-foreach
loop to iterate through each record and render a row for each.

Next, the focus will be on rendering the row for each record – in this case, one for each
book in the catalog.

Rows are added using a <div class="row"> element. A row contains cells, and each
cell can span several columns so that the row takes up 12 columns. Each cell is added
using a <div class="col-N"> element, where N is the number of columns it spans.
For example, <div class="col-3">Title</div> is a cell spanning three columns.

The QWeb template rendering is done on the server side, and record set objects are used.
So, dot notation can be used to access fields from related data records. For example,
o.name gets the value of the name field from the o record. And it is easy to follow
relational fields to access their data. For example, o.publisher_id.email gets the
email field from the partner record referenced by the publisher_id field. Notice that
this is not possible in client-side rendered QWeb views, such as web client Kanban views.

To add the content for each record row, add the following XML inside the <div
class="row"> element:

<!-- Report Row Content -->

<div class="row">

 <div class="col-3">

 <h4></h4>

 </div>

 <div class="col-2">

 </div>

 <div class="col-2">

 <span t-field="o.date_published"

 t-options="{'widget': 'date'}" />

 </div>

 <div class="col-3">

https://github.com/odoo/odoo/wiki/Tips-and-tricks:-BS3-to-BS4
https://github.com/odoo/odoo/wiki/Tips-and-tricks:-BS3-to-BS4

420 Creating Printable PDF Reports with Server-Side QWeb

 <div t-field="o.publisher_id"

 t-options='{

 "widget": "contact",

 "fields": ["address", "email", "phone",

 "website"], "no_marker": true}' />

 </div>

 <div class="col-2">

 <!-- Render Authors -->

 </div>

</div>

In the previous code, the t-field attributes are being used to render field data.

The t-options attribute can also be used to provide additional options for the field
rendering, such as the widget to use.

Let's have a closer look at the field widgets and their options.

Using field widgets
In the template, field values are rendered using the t-field attribute. This can be
complemented with the t-options attribute so that you can use a specific widget to
render the field content.

t-options is set with a dictionary-like data structure. The widget key can be used to
represent the field data.

In the previous example code, "widget": "contact" is used to present an address.
It was used to render the publishing company's address, o.publisher_id. The no_
marker="true" option was used to disable some pictograms and the contact widget,
which are displayed by default.

Changes in Odoo 11
The t-options attribute was introduced in Odoo 11, replacing the
t-field-options attribute that was used in previous Odoo versions.

For example, assuming that doc represents a particular record, rendering a date field
value looks like this:

<span t-field="doc.date_published" t-options="{'widget':
'date'}" />

Designing report content 421

The reference documentation for the supported widgets and options can be found at
https://www.odoo.com/documentation/15.0/developer/reference/
frontend/javascript_reference.html#field-widgets.

Tip
Documentation is not always up to date, and additional details may be found
regarding the corresponding source code. The place to look is https://
github.com/odoo/odoo/blob/15.0/odoo/addons/base/
models/ir_qweb_fields.py. Look for classes that inherit from
ir.qweb.field. The get_available_options() methods give
insight into the supported options.

With that, we've added the QWeb XML code to render the row for each book. However,
the authors column is missing. The next section will add the author names, along with
their images, illustrating how to add image content to a report.

Rendering images
The last column of the report features should present the list of authors, along with
their avatars. The avatar image can be presented using the t-field attribute and the
image widget.

In the last column, add the following code:

<!-- Render authors -->

<ul class="list-unstyled">

 <t t-foreach="o.author_ids" t-as="author">

 <span t-field="author.image_128"

 t-options="{'widget': 'image',

 'style': 'max-width: 32px'}" />

 </t>

In the previous code, there is a loop on the values to the author_ids many-to-many
field. For each author, you must render the image in the image_128 partner field using
the image widget.

With that, you have added the header and details rows. The next few sections will work on
the report footer, which is presented at the end of the report, and in the process introduce
report totals.

https://www.odoo.com/documentation/15.0/developer/reference/frontend/javascript_reference.html#field-widgets
https://www.odoo.com/documentation/15.0/developer/reference/frontend/javascript_reference.html#field-widgets
https://github.com/odoo/odoo/blob/15.0/odoo/addons/base/models/ir_qweb_fields.py
https://github.com/odoo/odoo/blob/15.0/odoo/addons/base/models/ir_qweb_fields.py
https://github.com/odoo/odoo/blob/15.0/odoo/addons/base/models/ir_qweb_fields.py

422 Creating Printable PDF Reports with Server-Side QWeb

Calculating totals
A common need in reports is to provide totals. In some cases, the model has fields
computing these, and the report just needs to use them. In other cases, the totals might
have to be computed by the report.

As an example, the Book Catalog report will present the total number of books and
authors in a final row.

For this, a last row should be added after the closing tag of the <t
t-foreach="docs"> element, to present the report totals.

To do so, add the footer content with the following XML:

<!-- Report footer content -->

<div class="row">

 <div class="col-3">

 <t t-out="len(docs)" /> Books

 </div>

 <div class="col-7" />

 <div class="col-2">

 <t t-out="len(docs.mapped('author_ids'))" /> Authors

 <div>

</div>

The len() Python function is used to count the number of elements in a collection.
Similarly, totals can also be computed using sum() over a list of values. For example, the
following list comprehension computes a total amount:

<t t-out="sum([x.amount for x in docs])" />

This list comprehension is a loop on the docs variable and returns a list of values stating
the amount value of each record.

Your last low with the report's total is created. However, there are cases where grand totals
are not enough, and running totals are needed. The next section will show you how to
accumulate the values for these running totals.

Designing report content 423

Calculating running totals
In some cases, the report needs to perform computations throughout its iterations – for
example, to keep a running total, with the total sum up to the current record. This kind
of logic can be implemented in QWeb using a variable to accumulate values on each
record iteration.

To illustrate this, you can compute the accumulated number of authors. Start by
initializing the variable, just before the t-foreach loop on the docs record set, using
the following code:

<!-- Running total: initialize variable -->

<t t-set="missing_count" t-value="0" />

Then, inside the loop, add the record's number of authors to the variable. Do this right
after presenting the list of authors, and also print out the current total on every line:

<!-- Running total: increment and present -->

<t t-set="missing_count"

 t-value=" missing_count + int(not o.publisher_id)" />

<p>(accum. <t t-out="missing_count"/>)</p>

The previous code can be added to any of the report cells – for example, in the Publisher
column cell.

With that, you have added all the report content, including report totals. Another feature
that you can use on reports is multilingual support. This is supported in Odoo and the
next section explains how to use it.

Enabling language translation in reports
The Odoo user interface uses the language selected by the current user. In some cases, a
report might need to change this to a particular language. For example, a document might
be better printed using the customer language, rather than the user's selected language.

In QWeb, the t-call directive, which is used to render a template, can be followed by
the t-lang attribute, with an expression evaluation of the language to use. It should
evaluate to a language code, such as es or en_US, and is usually an expression with the
field where the language to use can be found.

To showcase this, the Library app will include a version of the Book Catalog report using
the library's base language, not the user's language. The library language will be the one
that's set on the company partner record.

424 Creating Printable PDF Reports with Server-Side QWeb

For this, the existing book_catalog template can be reused. It should be called from
another template, and that call can set the language to use for the rendering process.

In the reports/library_book_report.xml file, add the following two record
elements:

<record id="action_library_book_report_native"

 model="ir.actions.report">

 <field name="name">Native Language Book Catalog</field>

 <field name="model">library.book</field>

 <field name="report_type">qweb-pdf</field>

 <field name="report_name">

 library_app.book_catalog_native</field>

 <field name="binding_model_id"

 ref="model_library_book" />

 <field name="binding_type">report</field>

 <field name="paperformat_id"

 ref="paperformat_euro_landscape" />

</record>

<template id="book_catalog_native">

 <t t-call="library_app.book_catalog"

 t-lang="res_company.parter_id.lang" />

</template>

The first record adds the Native Language Book Catalog report action, which uses the
library_app.book_catalog_native template to render the report.

The second record adds the report template. It is a single QWeb element that uses t-call
to render the book_catalog template and t-lang to set the language to be used.

The expression that's used to find the language value is res_company.parter_
id.lang. The res_company variable is one of the many that's available in any report
and is the active company. Companies have a related partner record, partner_id, and
partners have a field to store the language in, called lang.

The reports being worked on are based on a record set, such as Books. But there are cases
where the data to be used needs specific computation. The next section describes options
to handle these cases.

Creating custom reports 425

After completing this step, the final book catalog report example should look as follows:

Figure 12.3 – The final book catalog report

The essential elements for building printable reports in Odoo were covered throughout
this section. Going further, advanced reports can use specific logic to build the data to be
used in the report. The next section discusses how to do this.

Creating custom reports
By default, a report is rendered for the selected records and is available in the rendering
context through the docs variable. In some cases, it is useful to prepare arbitrary data
structures to be used in the report. This is possible using custom reports.

A custom report can add whatever data that's needed to the report rendering context. This
is done using an abstract model with a specific name, following the naming convention of
report.<module>.<report-name>.

This model should implement a _get_report_values() method, which returns a
dictionary with the variables to add to the rendering context.

426 Creating Printable PDF Reports with Server-Side QWeb

As an example, a Books by Publisher custom report will be added to the Library app. It
will show the books that have been published by each publisher. The following screenshot
shows an example of the report's output:

Figure 12.4 – Example of the Books by Publisher custom report

The report will be available in the Contacts list. One or more partners can be selected,
and the report will present the titles published by each, if any. It can also be run from the
publisher's form, as shown in the following screenshot:

Figure 12.5 – Print menu option for the Books by Publisher report

Creating custom reports 427

This report implementation can be split into two steps. The first is the business logic for
preparing the data to be used by the report, while the second is the QWeb template for the
report layout.

The next section explains how to prepare the report data.

Preparing custom report data
A custom report can use data that's been prepared by specific business logic, instead of
simply using the record set that's been selected by the user.

This can be done using an abstract model while following a specific name convention,
that implements a _get_report_values() method, to return a dictionary with the
variables to be used by the report template.

To implement this as a custom report, add the reports/library_publisher_
report.py file with the following code:

from odoo import api, models

class PublisherReport(models.AbstractModel):

 _name = "report.library_app.publisher_report"

 @api.model

 def _get_report_values(self, docids, data=None):

 domain = [("publisher_id", "in", docids)]

 books = self.env["library.book"].search(domain)

 publishers = books.mapped("publisher_id")

 publisher_books = [

 (pub,

 books.filtered(lambda book:

 book.publisher_id == pub))

 for pub in publishers

]

 docargs = {

 "publisher_books": publisher_books,

 }

 return docargs

428 Creating Printable PDF Reports with Server-Side QWeb

For this file to be loaded by the module, it is also necessary to do the following:

• Add the reports/__init__.py file with a from . import library_
publisher_report line.

• Add a from . import reports line to the top of the __init__.py file.

The model is an AbstractModel, meaning that it has no database representation and
holds no data. The data to be used for rendering will be computed by specific business
logic.

The report template identifier name will be publisher_report, so the model name
should be report.library_app.publisher_report.

The model has an @api.model decorated method named _get_report_values. The
docids argument is a list of the numeric IDs selected to print the report. The base model
to run the report is res.partner, so these will be partner IDs.

The method uses specific business logic to find the books from the selected publishers
and groups them by publisher. The result is in the publisher_books variable, which
is a list of pairs, along with the publisher records and a record set of book records; that is,
[(res.partner(1), library.book(1, 2, 3)].

_get_report_values returns a dictionary with a publisher_books key that
returns this data structure. This key will be available as a variable in the report template
and can be iterated in a loop.

Now that the custom report data has been prepared, the next step is to add the QWeb
report template.

Adding the report template
The next step is to create the QWeb template that's used to render the report. This
template is similar to what is done for regular reports. An XML file is needed, along with
the report action and the report QWeb template. The only difference is that, instead of the
docs context variable, this template will have context variables available as whatever key/
values are returned by the _get_report_values method.

To implement the report action and template, add the reports/library_
publisher_report.xml file with the following code:

<odoo>

 <record id="action_publisher_report" model=

 "ir.actions.report">

Creating custom reports 429

 <field name="name">Books by Publisher</field>

 <field name="model">res.partner</field>

 <field name="report_type">qweb-pdf</field>

 <field name="report_name">

 library_app.publisher_report</field>

 <field name="binding_model_id"

 ref="base.model_res_partner" />

 <field name="binding_type">report</field>

 </record>

 <template id="publisher_report">

 <t t-call="web.html_container">

 <t t-call="web.external_layout">

 <div class="page">

 <div class="container">

 <h1>Books by Publisher</h1>

 <t t-out="res_company" />

 <t t-foreach="publisher_books" t-as="group">

 <h2 t-field="group[0].name" />

 <t t-foreach="group[1]" t-as="book">

 </t>

 </t>

430 Creating Printable PDF Reports with Server-Side QWeb

 </div>

 </div>

 </t>

 </t>

 </template>

</odoo>

The previous XML includes two records – one for adding the Books by Publisher report
action and another for adding the publisher_report report template.

When running this report, the report engine will try finding a report.library_app.
publisher_report model. If it exists, as is the case here, the _get_report_
values() method is used to add variables to the rendering context.

The QWeb template can then use the publisher_books variable to access the
added data. It is a list containing a tuple for each publisher. The first tuple element,
group[0], is the publisher record that's used on the group header, while the second
tuple element, group[1], is the record set containing the published books, presented
using a second for loop.

Remember to also reference this XML file in the __manifest__.py module. Having
done this, once the library_app module has been upgraded and the Odoo web
browser page has been reloaded, you will have the Books by Publisher report available in
the Print context menu, when records are selected in the Contacts list.

Summary
In this chapter, you learned about the essential techniques to create and add custom Odoo
reports. Installing the recommended version of the wkhtmltopdf utility is important to
ensure the reports are rendered correctly. You learned that reports are run through report
actions, which provide the basic information needed to render them. These may include
the paper format to be used and you now know how to do so.

The next thing you learned about is report design, which can be implemented with QWeb
templates. Knowledge of QWeb, HTML, and Bootstrap is needed for this, as you have
been made aware of. In some cases, reports need specific business logic to prepare the
data to use. For this, you learned how to create custom report models, along with the
techniques to use them.

Further reading 431

Printable reports can be important parts of a business application, as they are often needed
as a simple way to send information to external parties or to support physical processes in
the warehouse or shop floor. This chapter provided you with the tools and techniques to
implement this kind of requirement. Now, you can ensure that your business application
doesn't fall short of your user's needs.

In the next chapter, we will continue to use QWeb, this time to build website pages. Web
controllers will also be explained, which allow richer features to be used on Odoo web pages.

Further reading
This additional reference material complements the topics described in this chapter.

Relevant Odoo official documentation:

• QWeb Reports: https://www.odoo.com/documentation/15.0/
developer/reference/backend/reports.html

• QWeb Templates: https://www.odoo.com/documentation/15.0/
developer/reference/frontend/qweb.html

• Bootstrap 4 official documentation: https://getbootstrap.com/docs/4.1

Other relevant resources:

• The Odoo Community Association hosts a project dedicated to the enhanced report
feature at https://github.com/OCA/reporting-engine.

• Bootstrap additional learning resources from Packt Publishing can be found at
https://www.packtpub.com/tech/bootstrap.

https://www.odoo.com/documentation/15.0/developer/reference/backend/reports.html
https://www.odoo.com/documentation/15.0/developer/reference/backend/reports.html
https://www.odoo.com/documentation/15.0/developer/reference/frontend/qweb.html
https://www.odoo.com/documentation/15.0/developer/reference/frontend/qweb.html
https://getbootstrap.com/docs/4.1
https://www.packtpub.com/tech/bootstrap

13
Creating Web and

Portal Frontend
Features

Odoo is a business application framework, providing all the tools necessary to quickly
build apps. A uniform web client provides the business user interface. But organizations
are not isolated from the world. Being able to also interact with external users is needed to
support efficient processes. For this, Odoo supports a web interface.

The internal user web client is sometimes referred to as the backend, and the external user
interface as the frontend. The frontend provides portal features, accessible to portal user
logins. It also provides public features, accessible without the need for a login, referred as
website features.

The portal complements backend apps, providing self-service features to external users,
such as viewing and paying for their orders, or submitting a support ticket.

The website features are built on top of the Odoo Content Management System (CMS),
which allows you to build web pages, including easy-to-use drag and drop web page design
tools. Additional website features are provided as modules, such as blogs, online jobs, or
e-commerce.

434 Creating Web and Portal Frontend Features

In this chapter, you will learn how to develop frontend add-on modules, leveraging the
website features provided by Odoo, while discussing the following topics:

• Introducing the library portal learning project

• Creating a frontend web page

• Learning about web controllers

• Adding portal features

By the end of this chapter, you will have learned how to use web controllers and QWeb
templates to create dynamic web pages, integrated into the Odoo frontend. Additionally,
you will learn how to leverage the Odoo portal module, adding your features to it.

Technical requirements
The work in this chapter requires the library_checkout add-on module, last
edited in Chapter 11, Kanban Views and Client-Side QWeb. The add-on module and its
dependencies code can be found in the Git repository at https://github.com/
PacktPublishing/Odoo-15-Development-Essentials. The code in this
chapter can be found in the same repository.

Introducing the library portal learning project
To learn about Odoo web page development, a new project will be used. The library app
can use self-service features for library members. Members can be assigned a user login to
have access to their book checkout requests.

The library_portal add-on module will be created for these portal self-service
features.

The first file to add is the manifest, library_portal/__manifest__.py, which you
can create with the following code:

{

 "name": "Library Portal",

 "description": "Portal for library members",

 "author": "Daniel Reis",

 "license": "AGPL-3",

 "depends": [

 "library_checkout", "portal"

],

Creating a frontend web page 435

 "data": [

 "security/library_security.xml",

 "security/ir.model.access.csv",

 "views/checkout_portal_templates.xml",

],

}

The module depends on library_checkout to extend its features. It also depends on
the portal module, providing the foundation for portal features. The website module
provides CMS features, and can also be used for web page development. However, the
portal modules can provide essential frontend features without the need to have the
Website app installed.

The data key lists three XML files to be used. The first two are security related, and give
portal users the access needed to be able to view the checkout requests. The last XML file
will have the QWeb templates for the portal user interface.

An empty library_portal/__init__.py file is also needed for the module
directory to be a valid Python module, as required by the Odoo framework.

Now that the new module has the essential files, the next step is to add the basic
components needed to have a functioning web page.

Creating a frontend web page
To get started with the basics of Odoo web development, a simple web page will be
created. To do this, two components are needed: a web controller, triggered when a
particular URL is accessed, and a QWeb template, to generate the HTML to be presented
by that URL.

The web page used to showcase this is a book catalog, a simple list of the books in the
library. The book catalog page will be accessible at http://localhost:8069/
library/catalog.

436 Creating Web and Portal Frontend Features

The following screenshot provides an example of what should be seen:

Figure 13.1 – Book catalog frontend web page

The first step is to add the web controller, which we will do in the next section.

Adding a web controller
Web controllers are Python objects, used to implement web features. They can link URL
paths to an object method, so that when that URL is accessed, the method is executed.

For example, for the http://localhost:8069/library/catalog URL, the
accessed path is /library/catalog.

A URL path, sometimes also called an endpoint, can be assigned to a server function.
This is called routing. In Odoo, routes are declared with the @http.route method
decorator in an http.Controller object.

To create the route for /library/catalog, perform the following steps:

1. The controller Python code will be added in the controllers subdirectory. In
the library_portal module directory, edit the __init__.py file to import
that subdirectory:

from . import controllers

2. Add the controllers/__init__.py file to import the Python file with the
controller code, which will be in a main.py file:

from . import main

Creating a frontend web page 437

3. Add the actual controller file, controllers/main.py, with the following code:

from odoo import http

class Main(http.Controller):

 @http.route("/library/catalog",

 auth="public", website=True)

 def catalog(self, **kwargs):

 Book = http.request.env["library.book"]

 books = Book.sudo().search([])

 return http.request.render(

 "library_portal.book_catalog",

 {"books": books},

)

Having done these steps, the controller component is done, and is able to process requests
for the /library/catalog route.

The odoo.http module provides the Odoo web-related features. The web controllers,
responsible for page rendering, should be objects inheriting from the odoo.http.
Controller class. The actual name used for the class is not important. In the previous
code, the controller class name is Main().

The catalog() method, in the Main() class, is decorated with @http.route,
binding it to one or more URL routes. Here, the catalog() method is triggered by the
/library/catalog route. It also uses the auth="public" argument, meaning
that this route is accessible without requiring authentication. And the website=true
argument means that this page will use the web frontend layout, and ensures some needed
additional variables are made available.

Note
Using website=True does not require the Website app to be installed. It
also works with base Odoo frontend web pages.

These catalog() route method is expected to do some processing and then return the
HTML page to the user's web browser.

438 Creating Web and Portal Frontend Features

The http.request object is automatically set with the web request, and has available
the .env attribute, to access the Odoo environment. This can be used to instantiate Odoo
models. The example code does this to access the library.book model and then build
a record set with all books available.

The route method runs as the user who is logged in, or as the Public special user if no
user is logged in and the route allows public access. Since the Public user has very limited
access, sudo() might be needed to ensure that the data to be presented can be retrieved.

The final line returns the result of http.request.render(). This prepares a QWeb
template to be rendered. The two arguments are the template XML ID, library_
portal.book_catalog in this case, and a dictionary with the variables to make
available to the QWeb rendering context. In this case, a books variable is made available,
set with a books record set.

Note
The http.request.render() function returns a Odoo http.
response object, containing the instructions on what to render. The actual
processing of the QWeb template into HTML is delayed until all web controller
code is run and the response is ready to be sent to the client. This allows for
the route method to be extended and, for example, the qcontext attribute,
holding the dictionary to be used for the QWeb rendering, to be modified.

The controller is ready, but the QWeb template used needs to be created before it can
work. The next section takes care of that.

Adding a QWeb template
QWeb templates are XML snippets containing HTML code and QWeb directives that
can dynamically modify the output depending on conditions. The book catalog web page
needs a QWeb template to render the HTML to be presented.

To add the library_portal.book_catalog QWeb template, perform the
following steps:

1. A new XML data file, views/main_templates.xml, will be used to declare the
template. Add that to the __manifest__.py module file, in the data key:

 "data": [

 "views/main_templates.xml",

]

Creating a frontend web page 439

2. Add the XML data file with the QWeb template, views/main_templates.xml:

<odoo>

<template id="book_catalog" name="Book List">

 <t t-call="web.frontend_layout">

 <t t-set="title">Book Catalog</t>

 <div class="oe_structure">

 <div class="container">

 <h1 class="h1-book-catalog">

 Book Catalog</h1>

 <table class="table">

 <thead>

 <tr>

 <th scope="col">Title</th>

 <th scope="col">Published</th>

 <th scope="col">Publisher</th>

 </tr>

 </thead>

 <tbody>

 <t t-foreach="books" t-as="book">

 <tr scope="row">

 <td></td>

 <td><span t-field="book.date_published"

 /></td>

 <td><span t-field="book.publisher_id"

 /></td>

 </tr>

 </t>

 </tbody>

 </table>

 </div>

 </div>

 </t>

440 Creating Web and Portal Frontend Features

</template>

</odoo>

This completes the steps needed to get the QWeb template ready.

The previous code declares the book_catalog template. It is a Bootstrap table,
with three columns. The <thead> section declares the columns headers, and the <t
t-foreach> QWeb directive renders a table row for each book in the books record set.

Note
QWeb templates are XML. The XML language has stricter rules than regular
HTML, which, for example, tolerates opening tags that are not closed. This is
not allowed in XML, and therefore in QWeb templates. To be precise, QWeb
templates follow the XHTML requirements.

Important in this template is the first directive, <t t-call="web.frontend_
layout">. This is what makes the template HTML be rendered as an Odoo frontend
web page, including page headers and footers. For this layout to be used, the controller
route must include the website=True argument.

Tip
The website data passed into the QWeb evaluation context is set by the _
prepare_qcontext method of the ir.ui.view model. For example,
the website module adds variables to it, in the models/ir_ui_view.
py file.

<t t-set="title"> is also noteworthy. It is used by the frontend layout to set the
browser tab title.

When we have both the controller and the QWeb template in place, once the library_
portal module is installed or upgraded, opening http://localhost:8069/
library/catalog with a web browser should display a table with the library's books.

These are the key components used to implement frontend web pages. Note that the
Website app can be used to have more frontend features available, but is not required.

Being a web page, it may also need to use additional assets. The next section explains this.

Adding CSS and JavaScript assets
When designing web pages, the HTML code is often complemented with CSS or
JavaScript, which are best provided as additional assets.

Creating a frontend web page 441

Assets to load are declared in the head section of the page. Odoo has specific QWeb
templates in charge of loading assets. In particular, the web.assets_backend and
web.assets_frontend provide the assets needed specifically for backend web client
and frontend web pages. web.assets_common provides assets common to both.

To have additional assets loaded, the appropriate template needs to be extended.

For example, in the book catalog page, the title could be presented using a larger font
size. This can be done by declaring a style in a CSS file, which is then used in the <h1>
element. In fact, the book catalog QWeb template is already using <h1 class="h1-
book-catalog">, applying a custom style.

To add this custom style, perform the following steps:

1. Create the static/src/css/library.css file with the following content:

.h1-book-catalog {

 font-size: 62px;

}

2. This CSS must be loaded by frontend web pages. For this, the web.assets_
frontend template should be extended. Add to the __manifest__.py file the
following code:

 "assets": {

 "web.assets_backend": {

 "library_portal/static/src/css/

 library.css",

 }

 }

This describes how a module can add web assets. These assets will usually be .js, .css,
or .scss files.

Changes in Odoo 15
Web assets were previously added using an XML file, extending an QWeb
template, such as web.assets_backend or web.assets_
frontend. An example for this is provided in Chapter 11, Kanban Views and
Client-Side QWeb, in the Adding CSS and JavaScript assets section.

The basics for creating a frontend web page have been described, and involve three key
components: web controllers, QWeb templates, and web assets.

442 Creating Web and Portal Frontend Features

QWeb templates and their syntax have been thoroughly described in Chapter 11, Kanban
Views and Client-Side QWeb, and Chapter 12, Creating Printable PDF Reports with Server-
Side QWeb.

But web controllers are worth more attention, and a deeper description of their features.
The following section will provide this.

Understanding web controllers
Web controllers are the server-side components responsible for responding when an
Odoo web path is accessed, usually triggering the rendering of a web page.

A web path, such as /library/catalog, is assigned to a route, triggering a controller
method. The method code can access details of the web request through the request
object, and the result is a response object, with the details to return to the client.

Declaring routes
The http.route decorator is used to assign a method to a web path. These are the
arguments available:

• route, usually provided as a positional argument, is a string, or a list of strings,
with the paths to map. Method arguments can be extracted from the path. The
syntax to express these arguments is detailed in the next section.

• type, to specify the type of request. By default, this is http, and can also be set
to json.

• auth is the authentication type required. It can be one of user, public, or none.
The user option requires a login to allow access, public allows anonymous
access, through the public user, and none is useful in special cases, where an Odoo
database is not needed, such as authentication endpoints.

These are the arguments that can be used on route decorators. The next section explains
the syntax to extract values from the main argument, to be passed to the decorated method.

Extracting argument values from the route string
The route strings can specify arguments to extract, following the format <type:name>.
For example, <int:partner_id> extracts an integer value, and passes it to the method
as the partner_id keyword argument. Record instances are also supported, using the
model(<model name>) syntax. For example, <model('res.partner'):partner>
extracts a partner record, passed to the method with the partner keyword argument.

Understanding web controllers 443

Note
More information on route path formatting can be found in the
official Werkzeug documentation at https://werkzeug.
palletsprojects.com/routing/.

The URL parameters are passed to the decorated method as keyword arguments. These
parameters are after the ? character in a GET request, or submitted by a POST request. For
example, the http://localhost:8069/mypage?x=1&y=2 URL has two parameters,
x set to 1 and y set to 2.

Tip
Adding to routed methods the **kw generic keyword argument capture
prevents it from erroring if an unexpected argument is added to the URL. For
example, without it, accessing http://localhost:8069/library/
catalog?some_param=1 would return an error page. With **kw on
the method arguments, it would be captured in the kw variable, and could be
ignored by the method code.

The routed method return value can be any of the following:

• A falsy value, resulting in a 204 No Content HTTP code response.

• A text string, used to return a response with that text as the HTML content.

• A response object, usually created with the render() method.

Next, let's learn how the request object can be used in a routed method.

Using the request object
A request object is automatically instanced when a client web request is made to the
Odoo server. It is made available by importing odoo.http.request.

The following are the most important attributes provided by this object:

• env is an Odoo Environment object, similar to what self.env provides in
regular model methods.

• context is a dictionary-like Mapping object with the execution context. It is
similar to model method context.

• cr is a PostgreSQL cursor object for the Odoo database.

• db is the database name.

https://werkzeug.palletsprojects.com/routing/
https://werkzeug.palletsprojects.com/routing/

444 Creating Web and Portal Frontend Features

• session is an object storing the session details, including authentication.

• params stores the request parameters. It is usually not useful, since the parameters
are already provided as arguments to the method.

• csrf_token(time_limit=None) is a method to generate a CSRF token for
the current session. The time_limit is the token validity period in seconds. The
default, None, makes it valid for the whole session duration. This attribute is used,
for example, to set a CSRF token for HTML forms.

For http type requests, the following methods are also available:

• make_response(data, headers=None, cookies=None) can be used to
craft non-HTML responses.

• not_found(description=None) returns a 404 Not Found HTTP code.

• render(template, qcontext=None, lazy=True, **kw) returns a
QWeb template to render. The actual template rendering is delayed until the final
dispatch to the client, and so it can be modified by inheriting methods.

Request objects provide a way to access the Odoo environment and all the information
about the request made by the client. The next relevant object to understand is the
response, to be sent back to the client initiating the request.

Using the response object
The response object is used to dispatch the final HTTP message to send to the client.
When extending routed methods, it might be the case that the response returned by the
parent super() method needs modifications.

The following is available on the response object:

• template is the name of the template to render.

• qcontext is a dictionary with the data to make available for the template
rendering.

• uid is an integer with the ID of the user rendering the template. If not set, the
current user running the method code is used.

• render() is the same rendering method also available in the request object.

• flatten() forces the rendering of the template.

Adding portal features 445

The response object also supports the parameters provided by the parent library,
werkzeug.wrappers.Response. The corresponding documentation can be found
at https://werkzeug.palletsprojects.com/wrappers/#werkzeug.
wrappers.Response.

You now have a good idea about the web development components. Odoo also provides
a portal useful to interact with external users and the next section explains how to add
features to it.

Adding portal features
The Odoo portal feature make information available to interact with external users.
Different apps can add features to the portal. For example, the Sales app adds the ability
for customers to check their orders, and even pay for them.

Portal users need to be created, providing access to the portal. This is done on the
corresponding contact record in the Action context menu, with the Grant portal access
option, as shown in Figure 13.2:

Figure 13.2 – The Grant portal access option on a contact record

https://werkzeug.palletsprojects.com/wrappers/#werkzeug.wrappers.Response
https://werkzeug.palletsprojects.com/wrappers/#werkzeug.wrappers.Response

446 Creating Web and Portal Frontend Features

Once the user goes through the sign-up process, they can log in to Odoo and see a My
Account option when clicking on the username in the top right corner. This option opens
the portal home page, presenting a summary of all the documents available to the user.

The documents available depend on the apps installed. Figure 13.3 shows an example of
what the portal home page looks like:

Figure 13.3 – Portal page with book checkouts feature

The library_portal module adds the Book Checkouts item to the portal Documents,
as seen in Figure 13.3. This is the result of what will be implemented in this section.

The work for this will be split into three parts: access security, controllers, and QWeb
templates. Each of the following sections will address one of these steps. You will start by
setting the portal access security configuration.

Configuring access security for the portal users
Before portal users can access app data, the necessary access rights need to be given to the
portal user group, base.group_portal group.

In the case of the library app, portal users should be given read-only access to the book,
member, checkout, and stage models. Furthermore, each portal user should only be able
to see their own member record and checkouts. For this, both access rights and record
rules need to be added.

Adding portal features 447

To configure the access security for portal users, perform the following steps:

1. Create the security/ir.model.access.csv file, adding read access to the
library models, with the following content:

id,name,model_id:id,group_id:id,perm_read,perm_
write,perm_create,perm_unlink

access_book_portal,Book Portal Access,library_app.model_
library_book,base.group_portal,1,0,0,0

access_member_portal,Member Portal Access,library_member.
model_library_member,base.group_portal,1,0,0,0

access_stage_portal,Checkout Stage Portal Access,library_
checkout.model_library_checkout_stage,base.group_
portal,1,0,0,0

access_checkout_portal,Checkout Portal Access,library_
checkout.model_library_checkout,base.group_portal,1,0,0,0

access_checkout_portal_line,Checkout Portal Line
Access,library_checkout.model_library_checkout_line,base.
group_portal,1,0,0,0

2. Create the security/library_security.xml file with record rules, limiting
the records portal that users will be able to access:

<odoo>

 <data noupdate="1">

 <record id="member_portal_rule" model="ir.rule">

 <field name="name">

 Library Member Portal Access</field>

 <field name="model_id"

 ref=

 "library_member.model_library_member"/>

 <field name="domain_force"

 >[('partner_id', '=',

 user.partner_id.id)]</field>

 <field name="groups"

 eval="[(4,ref('base.group_portal'))]"/>

 </record>

 <record id="checkout_portal_rule" model="ir.rule">

 <field name="name">

448 Creating Web and Portal Frontend Features

 Library Checkout Portal Access</field>

 <field name="model_id"

 ref=

 "library_checkout.model_library_checkout"/>

 <field name="domain_force"

 >[('member_id.partner_id', '=',

 user.partner_id.id)]</field>

 <field name="groups"

 eval="[(4,ref('base.group_portal'))]"/>

 </record>

 </data>

</odoo>

3. Finally, add these data files to the data key in the module __manifest__.py
file:

 "data": [

 "security/ir.model.access.csv",

 "security/library_security.xml",

 "views/assets.xml",

 "views/main_templates.xml",

],

The record rules created apply filters based on the current user partner record, user.
partner_id.id. The members are filtered using the partner_id field, and the
checkouts are filtered using the member_id.partner_id field.

After this, and a module upgrade, portal users will have the access rights needed to use the
library portal pages.

Tip
It is often the case that web controllers avoid the need to have access rights
added, by using sudo() to get elevated access, which is sure to have access
to the data. While convenient, the usage of sudo() should be carefully
considered, and avoided if possible. It is more secure to implement access
security on the model layer, using ACLs and record rules, instead of relying on
the controller logic for that.

Having the necessary access rights configured, the next step is to add the checkouts item
to the portal main list.

Adding portal features 449

Adding a portal document type to the main list
Accessing the portal My Account page shows several document types available, such as
sales orders and invoices, and the number of items for each.

The library_portal module should add the Book Checkouts option to the My
Account page. Perform the following steps for that:

1. Edit the controllers/__init__.py file to import the Python file with the
controller code, which will be in the portal.py file:

from . import main

from . import portal

2. Add the controller file, controllers/portal.py, with the following code:

from odoo.http import route, request

from odoo.addons.portal.controllers import portal

class CustomerPortal(portal.CustomerPortal):

 def _prepare_home_portal_values(self, counters):

 values = super()

 ._prepare_home_portal_values(counters)

 if "book_checkout_count" in counters:

 count =

 request.env[

 "library.checkout"].search_count([])

 values["book_checkout_count"] = count

 return values

This extends the CustomerPortal controller, provided by the portal Odoo
module. The previous code extends the _prepare_home_portal_values()
method, responsible for calculating the document counters. It adds the book_
checkout_count key to the result values, set with the checkout count.

3. Add the QWeb template file, views/portal_templates.py, with the
following code:

<odoo>

 <template id="portal_my_home"

 inherit_id="portal.portal_my_home"

 name="Show Book Checkouts" priority="100"

450 Creating Web and Portal Frontend Features

 customize_show="True">

 <xpath expr="//div[hasclass('o_portal_docs')]"

 position="inside">

 <t t-call="portal.portal_docs_entry">

 <t t-set="title">Book Checkouts</t>

 <t t-set="url"

 t-value="'/my/book-checkouts'"/>

 <t t-set="placeholder_count"

 t-value="'book_checkout_count'"/>

 </t>

 </xpath>

 </template>

</odoo>

This extends the portal.portal_my_home template, responsible for rendering
the My Account page. The portal.portal_docs_entry template should be
used to render each document item. It uses three variables: the title, the url
to navigate to when clicked, and the placeholder_count, with the counter
identifier provided by the _prepare_home_portal_values function.

4. Finally, add the new data file to __manifest__.py:

 "data": [

 "security/library_security.xml",

 "security/ir.model.access.csv",

 "views/assets.xml",

 "views/main_templates.xml",

 "views/portal_templates.xml",

],

The previous steps add the Book Checkouts option to the document list in the My
Account page. Clicking on it will navigate to the /my/book-checkouts page, but this
hasn't been implemented yet. The next section will do this in a portal-friendly way.

Adding a portal document list page
The My Account home page lists the various document types available. Clicking the
document type link should open the list of documents available.

Adding portal features 451

Figure 13.4 shows what the document list page should look like:

Figure 13.4 – Portal document list page for book checkouts

The portal provides base features to be used for these document list pages, such as record
paging, filters, and sort options.

The previous example showed how to add a document type to the portal home page. Next,
the document list needs to be implemented. Continuing with the code from the previous
section, two steps are needed:

1. Edit the controller file, controllers/portal.py, to add the code for the /my/
book-checkouts route, which will render the my_book_checkouts template.

2. Edit the QWeb template file, views/portal_templates.py, to add the my_
book_checkouts template for the book checkout list page.

The code to add to controllers/portal.py is the following:

 @route(

 ["/my/book-checkouts", "/my/book-checkouts/

 page/<int:page>"],

 auth="user",

 website=True,

)

 def my_book_checkouts(self, page=1, **kw):

 Checkout = request.env["library.checkout"]

 domain = []

 # Prepare pager data

 checkout_count = Checkout.search_count(domain)

452 Creating Web and Portal Frontend Features

 pager_data = portal.pager(

 url="/my/book_checkouts",

 total=checkout_count,

 page=page,

 step=self._items_per_page,

)

 # Recordset according to pager and domain filter

 checkouts = Checkout.search(

 domain,

 limit=self._items_per_page,

 offset=pager_data["offset"],

)

 # Prepare template values and render

 values = self._prepare_portal_layout_values()

 values.update(

 {

 "checkouts": checkouts,

 "page_name": "book-checkouts",

 "default_url": "/my/book-checkouts",

 "pager": pager_data,

 }

)

 return request.render(

 "library_portal.my_book_checkouts",

 values

)

The previous code adds a route for the /my/book-checkouts and /my/book-
checkouts/page/ paths. The first is the one used by default, and the second allows
navigating through the record pages.

The method code is organized into three sections:

• The first code section prepares the pager_data variable, used by the template
to render the page navigation links. It uses a pager() function from the portal
module, responsible for preparing this data.

Adding portal features 453

• The second code section creates the record set to be used, checkouts. It does so
using the domain filter and pager data set previously.

• The third and last code section prepares the values dictionary and renders the
QWeb template. The values are initialized using the portal-provided _prepare_
portal_layout_values() function, and then additional data keys are set,
including the pager data. The record set to use is also set in the values, in this case in
the checkouts data key.

Tip
The portal pages can also have support for user-selected sort order and filters.
A good example of this is the portal Tasks, implemented by the Project app.
Inspecting the corresponding controllers and QWeb templates can provide
further guidance to add this to other portal pages.

You have added the controller code, now let's add the QWeb template with the following
code:

 <template id="my_book_checkouts" name=

 "My Book Checkouts">

 <t t-call="portal.portal_layout">

 <t t-if="checkouts" t-call="portal.portal_table">

 <thead>

 <tr>

 <th>Title</th>

 <th>Request Date</th>

 <th>Stage</th>

 </tr>

 </thead>

 <tbody>

 <tr t-foreach="checkouts" t-as="doc">

 <td>

 <a t-attf-href=

 "/my/book-checkout/{{slug(doc)}}">

 </td>

 <td>

454 Creating Web and Portal Frontend Features

 </td>

 <td>

 <span t-field="doc.stage_id.name"

 class="badge badge-pill badge-info"/>

 </td>

 </tr>

 </tbody>

 </t>

 <t t-else="">

 <div class="alert alert-warning" role="alert">

 There are no book checkouts.

 </div>

 </t>

 </t>

 </template>

The previous code declares the my_book_checkouts QWeb template. It starts by
calling the portal page template, portal.portal_layout.

Then, if there are records to render, it prepares an HTML table from them, calling the
portal.portal_table template.

Next, the template adds the table header and body. The table body uses a for-loop on the
checkouts record set to render each row.

Noteworthy is the <a> link on each record name. When rendering the checkout title,
the t-attf directive is used to generate the link to open the corresponding detail. The
special slug() function is used to generate a human-readable identifier for each record.

The link won't work for now, since the document detail page has not been implemented
yet. The next section will do that.

Adding a portal document detail page
The portal has a home page, from which the user can navigate to document lists, and then
open specific documents. A specific book checkout can be accessed with the /my/book-
checkout/<id> path.

Adding portal features 455

The previous sections implemented the home page and document list features. To
complete the portal, the document detail page should be implemented. Continuing with
the code from the previous section, two steps are needed:

1. Edit the controller file, controllers/portal.py, to add the code for the /my/
book-checkout route, rendering the book_checkout template.

2. Edit the QWeb template file, views/portal_templates.py, to add the book_
checkout template for the book checkout list page.

The code for the book checkout page controller is straightforward and brings nothing
new. It is the following:

 @route(

 ["/my/book-checkout/

 <model('library.checkout'):doc>"],

 auth="user",

 website=True,

)

 def portal_my_project(self, doc=None, **kw):

 return request.render(

 "library_portal.book_checkout",

 {"doc": doc},

)

The previous code adds a route for the /my/book-checkout/<id> path, which
translates the <id> into a library.checkout record. This record is used as a method
argument, captured by the doc variable name.

Since the doc variable contains the checkout record to use, the method only needs to
render the QWeb template for it, library_portal.book_checkout.

The code to use for the QWeb template is the following:

 <template id="book_checkout" name="Checkout Form">

 <t t-call="portal.portal_layout">

 <t t-call="portal.portal_record_layout">

 <t t-set="card_header">

 <div class="row">

 <div class="col">

 <h5 class="text-truncate"

456 Creating Web and Portal Frontend Features

 t-field="doc.name" />

 </div>

 <div class="col text-right">

 <span t-field="doc.stage_id.name"

 class="badge badge-pill badge-info"

 title="Current stage"/>

 </div>

 </div>

 </t>

 <t t-set="card_body">

 <!-- Member details -->

 <div class="row">

 Member

 </div>

 <div class="row">

 <div t-if="doc.member_id.image_1024"

 class="col flex-grow-0">

<img class="rounded-circle mt-1 o_portal_contact_img"

 t-att-src="image_data_uri(doc.member_id.image_1024)"

 alt="Contact"/>

 </div>

 <div class="col pl-sm-0">

 <address t-field="doc.member_id"

 t-options='{

 "widget": "contact",

 "fields": ["name", "email",

 "phone"]

 }' />

 </div>

 </div>

 <!-- Checkout books -->

 <div class="row">

 Borrowed books

 </div>

 <div class="row">

 <div class="col">

Adding portal features 457

 <li t-foreach="doc.line_ids" t-as="line">

 <span t-field=

 "line.book_id.display_name" />

 </div>

 </div>

 </t>

 </t>

 </t>

 </template>

The previous code created the book_checkout QWeb template. Again, it starts by
calling the portal page template, portal.portal_layout.

Then, the document details template, portal.portal_record_layout, is called to
prepare the detail content. It uses the following two QWeb variables, which should be set:

• card_header sets the HTML to use for the header.

• card_body sets the HTML to use for the document details.

This HTML adds rows with the content. Two particular elements are noteworthy:

• The element, adding an image from a data field

• The <address> element, rendering an address for a partner record

The current implementation is missing a nice usability feature, the breadcrumb allowing
users to navigate back through the links to the portal main page. The next section shows
how to add this.

Adding a portal breadcrumb
Portal pages support a breadcrumb, on the top region of the page. By default, a home icon
is available, allowing users to quickly navigate back to the main page. As the user navigates
to the document list, and then to a particular document, these selections can be added to
the breadcrumb.

The Odoo portal breadcrumb is added by the portal.portal_breadcrumbs
template. It should be extended to add the specific navigation steps for particular
document types.

458 Creating Web and Portal Frontend Features

To have the book checkout breadcrumb, edit the views/portal_templates.py file
to add the following template:

 <template id="portal_layout"

 name="Portal breadcrumb: book checkout"

 inherit_id="portal.portal_breadcrumbs">

 <xpath expr="//ol[hasclass('o_portal_submenu')]"

 position="inside">

 <li t-if="page_name == 'book-checkouts' or doc"

 class="col-lg-2"

 t-attf-class="breadcrumb-item

 #{'active ' if not doc else ''}">

 <a t-if="doc"

 t-attf-href="/my/book-checkouts?{{

 keep_query() }}">

 Checkouts

 <t t-else="">Checkouts</t>

 <li t-if="doc" class="breadcrumb-item

 active text-truncate

 col-8 col-lg-10">

 <t t-esc="doc.name"/>

 </xpath>

 </template>

The template in the previous code extends the portal.portal_breadcrumbs
template. It extends the element with the o_portal_submenu class, adding
breadcrumb elements to it.

The extension adds two possible elements: one for the Checkouts document list, and
another for a particular book checkout. The breadcrumb is included in all portal pages,
and these added elements should be conditionally rendered, only if they make sense for
the current page.

The previous sections guided you through the various steps needed to add new features to
the Odoo portal, enabling external users to interact with Odoo.

Summary 459

Summary
Frontend web pages allow Odoo to also provide features to external users. This can be
used to display generic information to the public, or give personalized information to
portal users. The frontend web features are the foundation of the Odoo CMS, provided by
the Website app, and for frontend features such as e-commerce.

In this chapter, you understood the technical components that are at the core of frontend
web features, web controllers, and QWeb templates. Web controllers implement routes,
triggered when accessing certain URL paths called routes, and running any specific
business logic needed. QWeb templates receive data prepared by the web controller and
render HTML output with the help of the QWeb templating engine.

You now know how to use these components to implement a public web page integrated
with the Odoo frontend, including the usage of your own web assets. You also know
how to leverage the essentials of the Odoo portal to provide self-service features to your
external users.

This chapter completes your journey through the various components in the Odoo
framework. The models are the central element around which other components are built
up. The Odoo base module provides a few essential models developers should be familiar
with. The next chapter takes on the task of providing an overview of these.

Further reading
These are additional reference materials that complement the topics discussed in this
chapter, found in the official Odoo documentation:

• Web controllers: https://www.odoo.com/documentation/15.0/
developer/reference/backend/http.html

• QWeb language: https://www.odoo.com/documentation/15.0/
developer/reference/frontend/qweb.html

• JavaScript API reference: https://www.odoo.com/documentation/15.0/
developer/reference/frontend/javascript_reference.html

• Bootstrap documentation: https://getbootstrap.com/docs/4.1/
getting-started/introduction

Additional Bootstrap learning resources can be found on the Packt Publishing technical
page: https://www.packtpub.com/tech/Bootstrap.

https://www.odoo.com/documentation/15.0/developer/reference/backend/http.html
https://www.odoo.com/documentation/15.0/developer/reference/backend/http.html
https://www.odoo.com/documentation/15.0/developer/reference/frontend/qweb.html
https://www.odoo.com/documentation/15.0/developer/reference/frontend/qweb.html
https://www.odoo.com/documentation/15.0/developer/reference/frontend/javascript_reference.html
https://www.odoo.com/documentation/15.0/developer/reference/frontend/javascript_reference.html
https://getbootstrap.com/docs/4.1/getting-started/introduction
https://getbootstrap.com/docs/4.1/getting-started/introduction
https://www.packtpub.com/tech/Bootstrap

Finally, the fifth part covers deployment and maintenance practices. Some special
considerations need to be taken into account when deploying for production use, such
as configuring a reverse proxy between the Odoo service and the network. An additional
reference chapter is included, providing an overview of the Odoo base key models.

In this section, the following chapters are included:

• Chapter 14, Understanding Odoo Built-In Models

• Chapter 15, Deploying and Maintaining Production Instances

Section 5:
Deployment and

Maintenance

14
Understanding Odoo

Built-In Models
When a new database is created, an initial data model is populated, providing basic
entities that can be used for Odoo Apps. This chapter identifies the most relevant basic
entities and explains how to inspect them from the user interface (UI), as well as what
their role is.

While this understanding is not indispensable for you to be able to develop Odoo apps,
it will provide a solid base to understand the Odoo framework core concepts and help to
leverage the technical menu to address more complex requirements or issues.

The following topics are discussed in this chapter:

• Understanding the contacts data model

• Understanding the users and companies data model

• Understanding the security-related information repository

• Understanding the database structure models

• Understanding the UI-related repository

• Understanding the configuration properties and company parameters

• Understanding the messaging data model

464 Understanding Odoo Built-In Models

By the end of this chapter, you will be able to use the technical menu to inspect the most
relevant internal data record of the Odoo framework, helping you with issue analysis
and resolution.

Throughout the chapter, simplified entity-relationship diagrams (ERDs) are presented,
allowing you to visualize how the core models are interrelated and thus have a deeper
understanding of how these can be used in your business applications.

Technical requirements
To follow this chapter, you will only need admin access to an Odoo 15 instance and to
enable the developer mode in the Settings | Technical menu. To follow the contacts data
model section, the Contacts app must be installed, and to follow the messaging data
model section, the Discuss app must be installed.

Understanding the contacts data model
Resource models carry the res. prefix on their technical identifiers (IDs). They hold
Odoo's basic master data, such as users, companies, and currencies.

A central model for Odoo is the Partner model, also called Contact, with a technical
name of res.partner. It is used anywhere an address, person, or organization needs to
be represented. Examples are customers, suppliers, contact persons, invoicing or shipping
addresses, employees, and applicants. It is also used to complement the contact data for
users and configured companies.

While the res.partner model is provided by the Odoo base module and requires no
specific app to be installed, to have the corresponding menus available, the Contacts app
needs to be installed. These are the relevant Contact related models:

• Bank, or res.bank, holds bank identification data, as it turns out to be hard to do
business without having a bank involved somehow. Bank data can be browsed from
the Contacts | Configuration | Bank Accounts | Banks menu option.

• Bank Account, or res.partner.bank, holds bank account details. Bank
accounts are related to a res.partner and, not surprisingly, also reference the
res.bank bank they are related to. Bank accounts can be browsed at Contacts |
Configuration | Bank Accounts | Banks Accounts.

• Industry, or res.partner.industry, is a high-level list of economic activities.
It is populated with NACE codes. NACE, the Nomenclature of Economic
Activities, is the European statistical classification of economic activities. The list
can be found at Contacts | Configuration | Industries.

Understanding the contacts data model 465

• Country, or res.country, lists the world countries and includes useful data such
as the two-digit International Organization for Standardization (ISO) code, the
phone-calling prefix number, or the currency used. The list is automatically populated
when a new database is created and is used by the res.partner model. The country
list can be browsed at Contacts | Configuration | Localization | Countries.

• Country State, or res.country.state, lists country states and similar
administrative regions. The list is populated by default, and the data can be seen at
Contacts | Configuration | Localization | Feb. States.

• Country Group, or res.country.group, allows us to define country groups.
The default groups provided by Odoo are Europe, Single Euro Payments Area
(SEPA) Countries, and South America. Other groups can be added per need, at
Contacts | Configuration | Localization | Country Groups.

• Currencies, or res.currency, contains a currency list, relevant when
multi-currency is enabled. The list is pre-populated by Odoo, and the relevant
currencies should be set as active. The menu option to access the list is in the
Invoicing/Accounting app (if multi-currency is enabled), in the corresponding
Configuration | Accounting | Currencies menu option.

The following diagram provides a high-level overview of these models and their relations:

Figure 14.1 – Contacts data model

466 Understanding Odoo Built-In Models

Note
The data model diagrams provided here are simplified ERDs. Part of the
simplification is replacing the crow's foot notation, which may not be familiar to
many of you, with simple arrows. An arrow represents a many-to-one relation.
A bidirectional arrow represents a many-to-many relation. Dotted lines
represent soft relations that don't use a database ID or a database foreign key
(FK). Model names use the singular form, as is the convention for ERDs, even
if the Odoo model's name may use the plural form.

Other resource models are the users and companies, described in the next section.

Understanding the users and companies data
model
Users and companies are central elements of the Odoo data model. They can be accessed
in the Settings | Users & Companies menu. The menu options available are listed here:

• User, or res.users, stores the system users. These have an implicit partner record
in the partner_id field, where the name, email, image, and other contact details
are stored.

• Access Group, or res.group, stores the security access groups. This menu is
only available with the developer mode enabled. Users belonging to a group will be
granted that group's privileges. Groups can inherit other groups, meaning that they
will also provide the privileges from these inherited groups.

• Company, or res.company, stores the organization's details and the company-
specific configurations. It has an implicit partner record, holding the address and
contact details, stored in the partner_id field. A default company is provided
on new databases, with the base.main_company Extensible Markup Language
(XML) ID.

The following diagram provides a high-level view of relations between these models:

Understanding the security-related information repository 467

Figure 14.2 – Users and companies data model

The user and access group models are the foundation for the Odoo access security
definitions. The next section details these models, accessible from the Technical menu.

Understanding the security-related
information repository
Odoo users are granted access to features through access groups. These access groups hold
the definitions of the privileges access they provide. The most relevant access models are
listed here:

• User, or res.users, are the Odoo system users.

• Access Group, or res.group, are the access groups. Users belong to one or more
groups, and each group grants certain privileges.

• Model Access, or ir.model.access, grants a group create-read-update-delete
(CRUD) privileges on a model.

468 Understanding Odoo Built-In Models

• Rule, or ir.rule, grants a group CRUD privileges on a subset of the model
records, defined by a domain expression. For example, with regular access rights,
you can grant write access, and then a record rule can limit certain records to be
read-only.

The following diagram provides a simplified view of this part of the data model:

Figure 14.3 – Security-related data model

You have learned about the data model for users, access groups, partners, and access
rights, which all have a close connection between them. In the next section, you will
continue further improving your understanding of the database structure definition, such
as models and fields.

Understanding the database structure models
The information repository (ir.) models describe the Odoo internal configuration,
such as models, fields, and UI. These definitions can be accessed under the Settings |
Technical menu.

Understanding the database structure models 469

The data models-related information repository can be found using the Settings |
Technical | Database Structure menu. Following the most relevant option in that menu,
we have these settings:

• Decimal Accuracy, or decimal.precision, is used to configure the number of
precision digits for different use cases, such as product prices.

• Model, or ir.model, describes the Odoo installed data models that most of the
time map to a database table where the data is stored. It is useful to find the model's
XML ID, using the developer menu View Metadata option. The In Apps field is also
useful for finding out the modules involved in the model data structure definition.

• Field, or ir.model.field, stores the model fields defined in the database. This
list can be accessed using the Settings | Technical | Database Structure | Fields
menu, or the developer menu View Fields option.

• Attachment, or ir.attachment, is the model used to store attachment files. It is
a single storage place used across Odoo.

The Settings | Technical | Sequences & Identifiers menu includes models related to data
record IDs and contains the following settings:

• External Identifiers, or ir.model.data, is where external IDs, also known as
XML IDs are stored. They map ID names that are database instance-agnostic to
database instance-specific ID keys. They are accessible at Settings | Technical |
Sequences & Identifiers | External Identifiers.

• Sequence, or ir.sequence, describes the automatic number assignment
sequences used—for example, on sales orders or stock transfers.

470 Understanding Odoo Built-In Models

The following diagram presents a high-level view of the relations between these models:

Figure 14.4 – Database structure data model

You have learned about the key models used to hold the Odoo model definition. Next, we
have the presentation layer definition, discussed in the next section.

Understanding the UI-related information
repository
UI elements, such as menus and views, are stored in information repository models. The
corresponding data can be accessed through the Settings | Technical | User Interface
menu. The most relevant options found there are listed here:

• Menu, or ir.ui.menu, defines the menu options. These form a hierarchy tree, and
the leaf items can trigger an Action, then often provide instructions to display the
composition of views.

• Views, or ir.ui.view, stores the view definitions and their extensions. View types
include form, list, Kanban, and QWeb (both for reports and for web page templates).

Understanding the UI-related information repository 471

Under the Settings | Technical | Actions menu, you can find a definition for these UI
elements. The most relevant options are listed here:

• Action, or ir.actions.actions, is the base model that other action types
derive from. Usually, you won't need to deal with it directly.

• Reports, or ir.actions.report, are actions to print a report. They will have
related QWeb views, providing the report definition, used to generate the report
HyperText Markup Language (HTML) that can then be converted to a Portable
Desktop Format (PDF) format.

• Window Action, or ir.actions.act_window, is used to present the
composition of a view and is probably the most frequently used action type. The
simplest view composition is a list view and a form view.

• Server Action, or ir.actions.server, is used to run a server process, such as
creating or modifying a record, sending an email, or even running Python code.

The following diagram provides a simplified view of the previous models and their relations:

Figure 14.5 – Actions and UI data model

472 Understanding Odoo Built-In Models

With this section, you should have gained a better understanding of the several elements
relevant to defining the Odoo UI and how to use the technical menu to inspect them.
In the next section, you will be introduced to the technical models used for global
configuration parameters and for company-dependent data.

Understanding the configuration properties
and company parameters
Another important menu in the technical options is Settings | Technical | User
Parameters. You can find two options there: System Parameters and Company
Properties.

System Parameters, or ir.config_parameter, stores global configuration options.
Some are defaults that can be adjusted, while others are set when some options are
selected in the General Settings option. It is a simple key/value list—for example, the
web.base.url option stores the Odoo server Uniform Resource Locator (URL) and
can be used to create links in email templates.

Company Properties, or ir.property, is where data for multi-company fields is
stored. Some fields can have different values depending on the active company. These are
also known as property fields.

For example, the partner fields Account Receivable (property_account_
receivable_id), relevant for customers, and Account Payable (property_
account_payable_id), relevant for suppliers, are both property fields.

Since the same field name can hold different values, depending on the active company,
it can be a regular database file. That is where the ir.property model comes in as the
place where these values can be stored.

This model has the following fields:

• Name: The field's technical name, such as property_account_receivable_id.

• Field: A relation with the corresponding ir.model.fields record.

• Type: The field type, such as Float or Many2one.

• Resource: A reference to the record this value corresponds to. For example, res.
partner,62 means a reference for the res.partner record with database
ID 62.

• Company: The company this value is valid for.

Understanding messaging data models 473

• Value: The value this field has for this company, allowing for different companies
to give different values. If the field is relational, the reference is encoded in a similar
way as the Resource field—for example, account.account,813 for a chart of
accounts with ID 813.

Tip
The Resource field is optional. If blank, it is used as the default value for new
records in that company. This is used for the case of the Account Receivable
and Account Payable fields used as an example here.

Understanding the relevance of these company properties and parameters can be useful
for advanced configuration tweaks, such as adjusting the public web URL to be used or
defining a multi-company field default value. The next section will continue the technical
menu exploration journey, this time covering message-related models.

Understanding messaging data models
A relevant technical area you might need to work with is the messaging-related models
used by the Chatter widget found in many forms. These features are provided by the
Discuss module with a technical name of mail, so it needs to be installed before the
following menu items are available.

The relevant technical models can be found in the Settings | Technical | Discuss menu.
The most important options found there are listed here:

• Message, or mail.message, stores each message. It is related to a resource, a
particular record in a model, through the Mail Thread abstract model.

• Message Subtype, or mail.message.subtype, is used for each message. The
basic subtypes are Note, for internal discussions, Discussion, for outside messages,
and Activities, for scheduled activities. These are available for any model. Other
subtypes, usually model-specific, can be added to identify different events. This
allows the configuring of default subscriptions, deciding which events should
trigger notifications to which followers.

• Tracking Values, or mail.tracking.value, stores the field values change log
for tracked fields. For a field to be tracked, check the Enable Ordered Tracking field
checkbox, or on a model Python definition, set the tracked=True field attribute.
These changelogs are presented in the Chatter message, and so the tracking values
are linked to a Chatter message.

474 Understanding Odoo Built-In Models

• Activities, or mail.activity, stores the individual activities for a record. The
Activity Mixin abstract adds other models the ability to link to activities, similarly
to what Mail Thread does for messages.

• Activity Type, or mail.activity.type, are the configurable activity types,
such as Email, Call, Meeting, or Todo.

• Followers, or mail.followers, stores a list of followers for each message thread.
Each follower record also has a list of subtypes it has subscribed to. Whenever a new
message with any of these subtypes is added, the follower will get a notification.

Tip
Data access and changelogs are important features in some environments with
strict control policies. An alternative to the out-of-the-box tracking feature
is the Audit Log community module. You can find it at https://odoo-
community.org/shop/product/audit-log-533.

The following diagram provides a high-level view of these models and their relations:

Figure 14.6 – Message and activity data model

https://odoo-community.org/shop/product/audit-log-533
https://odoo-community.org/shop/product/audit-log-533

Summary 475

Most of the time, you would use a few handpicked application programming interface
(API) methods to create messages and activities and will not need to delve into the details
on how the corresponding data is stored.

For some advanced cases, having a good understanding of the underlying data model can
be valuable. In particular, understanding message subtypes and follower subscriptions to
them can be useful for fine-grained control of notifications. This completes our overview
of the Odoo framework's most important technical models.

Summary
In this chapter, you learned about the internal structures of the Odoo framework,
provided by information repository (ir) and resource (res) models.

The Contacts model is central for storing all people and address data in Odoo, and
installing the Contacts app adds the UI for this model and related data. Understanding
how company contacts can have child contacts and addresses is important to effectively
use Odoo. The Users & Companies menu, from the Settings app, was also discussed, to
introduce Users, Access Groups, and Companies. The role of Access Groups to grant
access privileges to Users is a key idea here. The remaining relevant elements are exposed
in the Technical menu of the Settings app. Let's review some key ideas here addressed in
the chapter.

Starting from the top of the menu, the Discuss submenu holds the message and activities
data model, and a key idea is how subtypes are used to control automatic notifications.
The Actions menu exposes the actions used in menu items and the context menu, and
is used to present views, print reports, or execute code in the server. The User Interface
menu introduces the Menu Items that make use of the Actions, as well as the Views
menu option, used to hold both backend views and frontend HTML templates. Next in
the menu is the Database Structure submenu. Here, the models used to describe all the
Odoo data structures are available. These are referenced in multiple places during app
development, such as in view definitions or model extensions. Closely related to models
are the Security definitions, granting members of access groups access privileges to read
or write to models, or specific record domains in a model.

476 Understanding Odoo Built-In Models

While not every single technical menu option was reviewed, the most relevant ones were
presented and should provide a solid understating of the data structures underlying the
base and mail modules. Your journey through the Odoo development horizon is close
to an end. Now that you have all the tools and skills to develop your business applications,
the final piece missing is to deploy them and make them available for the end users.

The Odoo project's last mile is to deploy our work for real usage. Installing Odoo for a
production environment has additional requirements when compared to a development
installation. The next chapter will guide you through the setup of an Odoo production
installation, avoiding the most common pitfalls.

15
Deploying and

Maintaining
Production Instances
In this chapter, you'll learn the basics of preparing an Odoo server for use in a
production environment.

Setting up and maintaining servers is a non-trivial topic in itself and should be done by
specialists. The information given here is not enough to ensure an average user can create
a resilient and secure environment that hosts sensitive data and services.

The goal of this chapter is to introduce the most important configuration aspects and the
best practices specific to Odoo deployments. This will help system administrators prepare
their Odoo server hosts.

You will start by setting up the host system, and then you will install the Odoo
prerequisites and Odoo itself. Ubuntu is a popular choice for cloud servers, and it will be
used here. Then, the Odoo configuration file needs to be prepared. Until this point, the
setup is similar to the one used for the development environment.

478 Deploying and Maintaining Production Instances

Next, Odoo needs to be configured as a system service so that it is automatically started
when the server starts.

For servers hosted on a public cloud, Odoo should be served through HTTPS. For this,
you will learn how to install and configure an Nginx reverse proxy by using a self-
signed certificate.

The final section discusses how to perform server upgrades and prepare a staging
environment that will allow us to perform dry-runs before the actual updates are applied.

The topics discussed in this chapter are as follows:

• Preparing the host system

• Installing Odoo from source code

• Configuring Odoo

• Setting up Odoo as a system service

• Setting up an Nginx reverse proxy

• Configuring and enforcing HTTPS

• Maintaining the Odoo service and modules

By the end of this chapter, you will be able to set up a reasonably secure Odoo server that
is good enough for low-profile production use. However, the recipes given in this chapter
aren't the only valid way to deploy Odoo – other approaches are also possible.

Technical requirements
To follow this chapter, you will need a clean Ubuntu 20.04 server – for example, a virtual
private server (VPS) hosted on the cloud.

The code and scripts used in this chapter can be found in the ch15/ directory of the
GitHub repository at https://github.com/PacktPublishing/Odoo-15-
Development-Essentials.

https://github.com/PacktPublishing/Odoo-15-Development-Essentials
https://github.com/PacktPublishing/Odoo-15-Development-Essentials

Preparing the host system 479

Preparing the host system
Odoo is usually deployed on Debian-based Linux systems. Ubuntu is a popular choice,
and the latest long-term support (LTS) version is 20.04 Focal Fossa.

Other Linux distributions can also be used. The CentOS/Red Hat Enterprise Linux
(RHEL) system is also popular in corporate circles.

The installation process requires elevated access, using the root superuser or the sudo
command. When using a Debian distribution, the default login is root, which has
administration access, and the command prompt shows #. On Ubuntu systems, the root
account is disabled. Instead, the initial user is configured during the installation process
and is a sudoer, meaning that the user is allowed to use the sudo command to elevate
access and run commands with the root privileges.

Before starting the Odoo installation, the host system dependencies must be installed, and
a specific user should be created to run the Odoo service.

The next section explains the required system dependencies on a Debian system.

Installing the system dependencies
When running Odoo from the source, some dependencies need to be installed in
the system.

Before starting, it is a good practice to update the package index and then perform an
upgrade to ensure that all installed programs are up to date, as follows:

$ sudo apt update

$ sudo apt upgrade -y

Next, the PostgreSQL database can be installed. Our user should be made a database
superuser so that they have administration access to the database. These are the
commands for this:

$ sudo apt install postgresql -y

$ sudo su -c "createuser -s $USER" postgres

Note
Odoo can use an existing PostgreSQL database, which is installed in its own
server. If this is the case, the PostgreSQL service does not need to be installed
in the Odoo server and the corresponding connection details should be set in
the Odoo configuration file.

480 Deploying and Maintaining Production Instances

These are the Debian dependencies required to run Odoo:

$ sudo apt install git python3-dev python3-pip \

python3-wheel python3-venv -y

$ sudo apt install build-essential libpq-dev libxslt-dev \

libzip-dev libldap2-dev libsasl2-dev libssl-dev

To have report printing capabilities, wkhtmltox must be installed. The recommended
version for Odoo 10 and later is 0.12.5-1. The download links can be found at https://
github.com/wkhtmltopdf/wkhtmltopdf/releases/tag/0.12.5. The
Ubuntu code names are bionic for version 18.04 and focal for version 20.04.

The following commands perform this installation for Ubuntu 20.04 Focal:

$ wget "https://github.com/wkhtmltopdf/wkhtmltopdf\

/releases""/download/0.12.5/\

wkhtmltox_0.12.5-1.focal_amd64.deb" \

-O /tmp/wkhtml.deb

$ sudo dpkg -i /tmp/wkhtml.deb

$ sudo apt-get -fy install # Fix dependency errors

The package installation may report missing dependencies errors. In this case, the last
command will force the installation of those dependencies and correctly complete the
installation.

Next, you will create a system user to be used for the Odoo processes.

Preparing a dedicated system user
A good security practice is to run Odoo using a dedicated user, who has no special
privileges on the host system.

A popular choice for this username is odoo. This is the command to create it:

$ sudo adduser --home=/opt/odoo --disabled-password \

--gecos "Odoo" odoo

Linux system users can have a home directory. For the Odoo user, this is a convenient
place to store the Odoo files. A popular choice for this is /opt/odoo. The --home
option used automatically creates this directory and sets it as the odoo user home.

https://github.com/wkhtmltopdf/wkhtmltopdf/releases/tag/0.12.5
https://github.com/wkhtmltopdf/wkhtmltopdf/releases/tag/0.12.5

Installing Odoo from source code 481

This user does not have access to the PostgreSQL database yet. The following commands
add that access and create the database for it to initialize the Odoo production
environment:

$ sudo su -c "createuser odoo" postgres

$ createdb --owner=odoo odoo-prod

Here, odoo is the username and odoo-prod is the name of the database to support our
Odoo instance. The odoo user was made the owner of the odoo-prod database. This
means that it has create and drop privileges over that database, including the ability to
drop it.

Tip
To run, Odoo does not require elevated privileges to the database being used.
These may only be needed for some maintenance operations, such as installing
or upgrading modules. So, for improved security, the Odoo system user can be
a non-owner database user. Note that in this case, the maintenance should be
done running Odoo with a different user than the owner of the database.

To start a session with the Odoo system user, use the following command:

$ sudo su - odoo

$ exit

This will be used to run installation steps as the Odoo user. When done, the exit
command terminates that session and returns to the original user.

In the next section, we will continue with the installation of the Odoo code and Python
dependencies in the /opt/odoo directory.

Installing Odoo from source code
While Odoo provides Debian/Ubuntu and CentOS/RHEL system packages, installing
from source code is a popular option due to the flexibility and control it provides.

Using source code provides better control over what is deployed and makes it easier
to manage changes and fixes once in production. For example, it allows us to tie the
deployment process to a Git workflow.

At this point, the Odoo system dependencies are already installed, and the database is
ready to use. Now, the Odoo source code can be downloaded and installed, along with the
required Python dependencies.

482 Deploying and Maintaining Production Instances

Let's see how to download the Odoo source code.

Downloading the Odoo source code
Sooner or later, your server will need upgrades and patches. A version control repository
can be of great help when this time comes. We use git to get our code from a repository,
just like we did when installing the development environment.

Next, we'll impersonate the odoo user and download the code into its home directory,
as follows:

$ sudo su - odoo

$ git clone https://github.com/odoo/odoo.git \

/opt/odoo/odoo15 \

-b 15.0 --depth=1

The -b option ensures that we get the right branch, and the --depth=1 option retrieves
only the latest code revision, ignoring the (long) change history and making the download
smaller and faster.

Tip
Git is an important tool to manage code versions of your Odoo deployments. If
you're not familiar with Git, it is worth learning more about it. A good starting
point is http://git-scm.com/doc.

Custom modules will usually also be managed with Git and should also be cloned to the
production server. For example, the following code will add the library custom modules
into the /opt/odoo/odoo15/library directory:

$ git clone https://github.com/PacktPublishing/Odoo-15-
Development-Essentials/opt/odoo/library

The Odoo source code is available on the server, but it can't run yet because the required
Python dependencies are not installed yet. Let's install these in the next section.

http://git-scm.com/doc

Installing Odoo from source code 483

Installing the Python dependencies
Once the Odoo source code is downloaded, the Python packages required by Odoo
should be installed.

Many of them also have Debian or Ubuntu system packages. The official Odoo installation
package for Debian uses them, and the dependency package names can be found in the
Odoo source code in the debian/control file: https://github.com/odoo/
odoo/blob/15.0/debian/control.

These Python dependencies can also be installed directly from the Python Package Index
(PyPI). Doing this using a Python virtual environment provides better protection from
changes being made to the host system.

The following commands create a virtual environment, activate it, and then install Odoo
from source, along with all the required Python dependencies:

$ python3 -m venv /opt/odoo/env15

$ source /opt/odoo/env15/bin/activate

(env15) $ pip install -r /opt/odoo/odoo15/requirements.txt

(env15) $ pip install -e /opt/odoo/odoo15

And Odoo should be ready now. Any of the following commands can be used to
confirm this:

(env15) $ odoo --version

Odoo Server 15.0

(env15) $ /opt/odoo/odoo15/odoo-bin --version

Odoo Server 15.0

$ /opt/odoo/env15/bin/python3 /opt/odoo/odoo15/odoo-bin
--version

Odoo Server 15.0

$ /opt/odoo/env15/bin/odoo --version

Odoo Server 15.0

Let's understand these commands one by one:

• The first command relies on the odoo command made available by pip install
-e /opt/odoo/odoo15.

• The second command does not rely on the odoo command, and it directly calls the
Odoo start script, /opt/odoo/odoo15/odoo-bin.

https://github.com/odoo/odoo/blob/15.0/debian/control
https://github.com/odoo/odoo/blob/15.0/debian/control

484 Deploying and Maintaining Production Instances

• The third command does not need the virtual environment to be activated
beforehand, as it uses the corresponding Python executable directly, which has the
same effect.

• The final command does the same in a more compact way. It uses directly the odoo
command available in that virtual environment. This can be useful for some scripts.

Odoo is now ready to run. The next step is to take care of the configuration file to use,
which we will explain in the following section.

Configuring Odoo
Once Odoo is installed, the configuration file to be used by the production service needs
to be prepared.

The next sub-section provides guidance on how to do this.

Setting up the configuration file
Configuration files are expected to be in the /etc system directory. So, the Odoo
production configuration file will be stored at /etc/odoo/odoo.conf.

To make it easier to see all of the available options, a default configuration file can be
generated. This should be done by the user that will run the service.

If not done yet, create a session for the odoo user and activate the virtual environment:

$ sudo su - odoo

$ python3 -m venv /opt/odoo/env15

Now, the following command can be used to create a default configuration file:

(env15) $ odoo -c /opt/odoo/odoo.conf --save --stop-after-init

In the previous command, the -c option sets the location of the configuration file. If
not given, it defaults to ~/.odoorc. The --save option writes the options to it. If the
file does not exist, it will be created with all default options. If it already exists, it will be
updated with the options used in the command.

Configuring Odoo 485

The following commands set a few important options for it:

(env15) $ odoo -c /opt/odoo/odoo.conf --save \

--stop-after-init \

-d odoo-prod --db-filter="^odoo-prod$" \

--without-demo=all --proxy-mode

The options set are as follows:

• -d: This is the default database to use.

• --db-filter: This is a regular expression filtering the databases available for the
Odoo service. The expression used makes available only the odoo-prod database.

• --without-demo=all: This disables demonstration data so that the Odoo
initialized databases start clean.

• --proxy-mode: This enables the proxy mode, meaning that Odoo should expect
requests forwarded from a reverse proxy.

The next step is to copy this default file to the /etc directory and set the necessary access
rights so that the Odoo user can read it:

$ exit # exit from the odoo user session

$ sudo mkdir /etc/odoo

$ sudo cp /opt/odoo/odoo.conf /etc/odoo/odoo.conf

$ sudo chown -R odoo /etc/odoo

$ sudo chmod u=r,g=rw,o=r /etc/odoo/odoo.conf # for extra
hardening

The last command ensures that the user running the Odoo process can read but can't
change the configuration file, thereby providing better security.

The Odoo log file directory also needs to be created and given access to the odoo user.
This should go inside the /var/log directory. The following commands do this:

$ sudo mkdir /var/log/odoo

$ sudo chown odoo /var/log/odoo

Finally, the Odoo configuration file should be edited to ensure that a few important
parameters are correctly configured. For example, the following command opens the file
using the nano editor:

$ sudo nano /etc/odoo/odoo.conf

486 Deploying and Maintaining Production Instances

These are the suggested values for some of the most important parameters:

[options]

addons_path = /opt/odoo/odoo15/odoo/addons,/opt/odoo/odoo15/
addons,/opt/odoo/library

admin_passwd = StrongRandomPassword

db_name = odoo-prod

dbfilter = ^odoo-prod$

http_interface = 127.0.0.1

http_port = 8069

limit_time_cpu = 600

limit_time_real = 1200

list_db = False

logfile = /var/log/odoo/odoo-server.log

proxy_mode = True

without_demo = all

workers = 6

Let's explain them in detail:

• addons_path: This is a comma-separated list of the paths where add-on
modules will be looked up. It's read from left to right, with the leftmost directories
considered a higher priority.

• admin_passwd: This is the master password used to access the web client database
management functions. It's critical to set this with a strong password or, even better,
to set it to False to deactivate the function.

• db_name: This is the database instance to initialize during the server startup
sequence.

• dbfilter: This is a filter for the databases to be made accessible. It's a Python-
interpreted regex expression. For the user not to be prompted to select a database
and for unauthenticated URLs to work properly, it should be set with ^dbname$,
for example, dbfilter=^odoo-prod$. It supports the %h and %d placeholders,
which are replaced by the HTTP request hostname and subdomain name.

• http_interface: This is the TCP/IP address Odoo will listen to. By default, it is
0.0.0.0, meaning all addresses. For a deployment behind a reverse proxy, this can
be set to the reverse proxy address so that only requests from there are considered.
Use 127.0.0.1 if the reverse proxy is in the same server as the Odoo service.

Configuring Odoo 487

• http_port: This is the port number at which the server will listen. By default, port
8069 is used.

• limit_time_cpu / limit_time_real: This sets CPU time limits for the
workers. The default settings, 60 and 120, may be too low, and it could be
convenient to increase them.

• list_db = False: This blocks database listing, both at the remote procedure
calls (RPCs)-level and in the UI, and it blocks the database management screens
and the underlying RPC functions.

• logfile: This is where the server log should be written. For system services, the
expected location is somewhere inside /var/log. If left empty, the log prints to
standard output instead.

• proxy_mode: This should be set to True when Odoo is accessed behind a reverse
proxy, as we will be doing.

• without_demo: This should be set to all in production environments so that
new databases don't have demo data on them.

• workers: This, with a value of two or more, enables the multiprocessing mode.
We'll discuss this in more detail shortly.

From a security point of view, the admin_passwd and list_db=False options are
particularly important. They block web access to the database management features and
should be set in any production or internet-facing Odoo server.

Tip
The openssl rand -base64 32 command can be used to generate a
random password in the command line. Change the 32 number to whatever
password size you prefer.

The following parameters can also be helpful:

• data_dir: This is the path where session data and attachment files are stored;
remember to keep backups of this directory.

• http_interface: This sets the addresses that will be listened to. By default, it
listens to 0.0.0.0, but when using a reverse proxy, it can be set to 127.0.0.1 in
order to respond to local requests only.

488 Deploying and Maintaining Production Instances

We can check the effect of the configuration made by running the Odoo manually,
as follows:

$ sudo su - odoo

$ source /opt/odoo/env15/bin/activate

$ odoo -c /etc/odoo/odoo.conf

The last command will not display any output to the console, as log messages are being
written to the log file instead of to the standard output.

To follow the log for a running Odoo server, the tail command can be used:

$ tail -f /var/log/odoo/odoo-server.log

This can be done from a different terminal window while the manual command is
running in the original terminal.

To run multiple terminal sessions on the same terminal window, you can use
multiplexing applications such as tmux or GNU screen. Ubuntu also has available the
Byobu utility, which is a wrapper for tmux or screen. For more details, see https://
help.ubuntu.com/community/Byobu.

Note
Unfortunately, the logfile configuration option can't be unset directly from
the Odoo command. If we want to temporarily send the log output back to
the standard output, the best solution is to use a copy of the configuration file
without the logfile option set.

It may be the case that the odoo-prod database has not been initialized by Odoo
and that this needs to be done manually. In this case, the initialization can be done by
installing the base module:

$ /opt/odoo/env15/bin/odoo -c /etc/odoo/odoo.conf -i base \

--stop-after-init

At this point, the Odoo configuration should be ready. Before continuing, it is worth
learning more about the multiprocessing workers in Odoo.

https://help.ubuntu.com/community/Byobu
https://help.ubuntu.com/community/Byobu

Setting up Odoo as a system service 489

Understanding multiprocessing workers
A production instance is expected to handle a significant workload. By default, the
server runs one process and can use only one CPU core for processing due to the Python
language Global Interpreter Lock (GIL). However, a multiprocessing mode is available so
that concurrent requests can be handled, allowing us to take advantage of multiple cores.

The workers=N option sets the number of worker processes to use. As a guideline, it
can be set to 1+2*P, where P is the number of processor cores. Finding the best setting
might involve some experimentation by using different numbers and checking how busy
the server processors are. Having PostgreSQL running on the same machine also has an
impact on this, and this will reduce the number of workers that should be enabled.

It is better to set workers that are too high for the load rather than too low. The minimum
should be six, due to the parallel connections used by most browsers. The maximum is
generally limited by the amount of RAM on the machine, as each worker will consume
some server memory. As a rule of thumb for normal usage patterns, the Odoo server
should be able to handle (1+2*P)*6 simultaneous users, where P is the number of
processors.

There are a few limit- configuration parameters that can be used to tune workers.
Workers are recycled when they reach these limits, where the corresponding process
is stopped and a new one is started. This protects the server from memory leaks and
particular processes overloading the server resources.

The official documentation provides additional advice on how to tune the worker
parameters. It can be found at https://www.odoo.com/documentation/15.0/
setup/deploy.html#builtin-server.

At this point, Odoo is installed, configured, and ready to run. The next step is to have it
running as an unattended system service. Let's look at this in detail in the next section.

Setting up Odoo as a system service
Odoo should run as a system service so that it is automatically started when the system
boots and runs unattended, not requiring a user session.

In Debian/Ubuntu systems, the init system is responsible for starting services.
Historically, Debian and its derived operating systems used sysvinit. This has changed,
and recent Debian/Ubuntu systems use systemd. This is true for Ubuntu 16.04 and later.

https://www.odoo.com/documentation/15.0/setup/deploy.html#builtin-server
https://www.odoo.com/documentation/15.0/setup/deploy.html#builtin-server

490 Deploying and Maintaining Production Instances

To confirm that systemd is used in your system, try the following command:

$ man init

This command opens the documentation for the current init system in use, so you
can check what is being used. At the top of the manual page, you should see SYSTEMD
mentioned.

Let's continue with the systemd service configuration.

Creating a systemd service
If the operating system is recent – such as Debian 8 and Ubuntu 16.04 or later – systemd
should be the init system being used.

To add a new service to the system, simply create a file describing it. Create a /lib/
systemd/system/odoo.service file with the following content:

[Unit]

Description=Odoo Open Source ERP and CRM

After=network.target

[Service]

Type=simple

User=odoo

Group=odoo

ExecStart=/opt/odoo/env/bin/odoo -c /etc/odoo/odoo.conf --log-
file=/var/log/odoo/odoo-server.log

KillMode=mixed

[Install]

WantedBy=multi-user.target

This service configuration file is based on the sample provided in the Odoo source code,
which can be found at https://github.com/odoo/odoo/blob/15.0/debian/
odoo.service. The ExecStart option should be adjusted to the specific paths to use
in this system.

https://github.com/odoo/odoo/blob/15.0/debian/odoo.service
https://github.com/odoo/odoo/blob/15.0/debian/odoo.service

Setting up Odoo as a system service 491

Next, the new service can be registered with the following command:

$ sudo systemctl enable odoo.service

To start this new service, run the following:

$ sudo systemctl start odoo

To check its status, use the following:

$ sudo systemctl status odoo

And it can be stopped using the following command:

$ sudo systemctl stop odoo

When running Odoo as a system service, it is useful to confirm that the client can access
it. Let's see how that can be done from the command line.

Checking the Odoo service from the command line
To confirm that the Odoo service is up and responsive, we can check that it is responding
to requests. We should be able to get a response from it and see no errors in the log file.

We can check whether Odoo is responding to HTTP requests inside the server by using
the following command:

$ curl http://localhost:8069

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

<title>Redirecting...</title>

<h1>Redirecting...</h1>

<p>You should be redirected automatically to target URL: /web. If not click the link.

In addition, to see what is in the log file, use the following command:

$ less /var/log/odoo/odoo-server.log

To follow what is being added to the log file live, tail -f can be used, as follows:

$ tail -f /var/log/odoo/odoo-server.log

Odoo is now installed and running as a service. Next, the setup can be improved by
adding a reverse proxy. The next section explains this.

492 Deploying and Maintaining Production Instances

Setting up an Nginx reverse proxy
While Odoo itself can serve web pages, it is recommended to have a reverse proxy in front
of it. A reverse proxy receives the traffic from the clients and then forwards it to the Odoo
servers responding to them. Doing this has several benefits.

On the security side, it can provide the following:

• Handle (and enforce) HTTPS protocols to encrypt traffic.

• Hide the internal network characteristics.

• Act as an application firewall, limiting the URLs accepted for processing.

On the performance side, it can provide the following:

• Cache static content, avoiding burdening the Odoo services with these requests and
thereby reducing their load.

• Compress content to speed up loading time.

• Act as a load balancer, distributing load between several Odoo services.

There are several options that can serve as a reverse proxy. Historically, Apache has been
a popular choice. In recent years, Nginx has become widely used and is referred to in the
Odoo official documentation. In our example, Nginx will be used for a reverse proxy, and
the presented security and performance features will be implemented with it.

First, Nginx should be installed and set to be listening on the default HTTP port. It is
possible that this port is already being used by another installed service. To ensure that the
port is free and available, use the following command, which should result in an error:

$ curl http://localhost

curl: (7) Failed to connect to localhost port 80: Connection
refused

If it does not return the previous error message, an installed service is using port 80 and
should be disabled or uninstalled.

For example, if an Apache server is installed, use the sudo service apache2 stop
command to stop it, or even uninstall it with the sudo apt remove apache2
command.

Setting up an Nginx reverse proxy 493

With port 80 free, Nginx can be installed and configured. The following command
installs Nginx:

$ sudo apt-get install nginx

$ sudo service nginx start # start nginx, if not already
started

To confirm that nginx is working correctly, visit the server address with a browser or
with the curl http://localhost command in the server. This should return a
Welcome to nginx page.

The Nginx configuration files are stored at /etc/nginx/available-sites/ and are
activated by adding them to /etc/nginx/enabled-sites/, which is usually done
with a symbolic link to the file in the available sites directory.

To prepare for the Odoo Nginx configuration, the default configuration should be
removed and an Odoo configuration file added, as follows:

$ sudo rm /etc/nginx/sites-enabled/default

$ sudo touch /etc/nginx/sites-available/odoo

$ sudo ln -s /etc/nginx/sites-available/odoo \

/etc/nginx/sites-enabled/odoo

Next, using an editor such as nano or vi, edit the configuration file as follows:

$ sudo nano /etc/nginx/sites-available/odoo

The following example provides a basic Nginx configuration for Odoo:

upstream odoo {

 server 127.0.0.1:8069;

}

upstream odoochat {

 server 127.0.0.1:8072;

}

server {

 listen 80;

 server_name odoo.mycompany.com;

 proxy_read_timeout 720s;

 proxy_connect_timeout 720s;

 proxy_send_timeout 720s;

494 Deploying and Maintaining Production Instances

 # Add Headers for odoo proxy mode

 proxy_set_header X-Forwarded-Host $host;

 proxy_set_header X-Forwarded-For $proxy_add_x_

 forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_set_header X-Real-IP $remote_addr;

 # log

 access_log /var/log/nginx/odoo.access.log;

 error_log /var/log/nginx/odoo.error.log;

 # Redirect longpoll requests to odoo longpolling port

 location /longpolling {

 proxy_pass http://odoochat;

 }

 # Redirect requests to odoo backend server

 location / {

 proxy_redirect off;

 proxy_pass http://odoo;

 }

 # common gzip

 gzip_types text/css text/scss text/plain text/xml

 application/xml application/json application/javascript;

 gzip on;

}

At the top of the configuration file, there are the upstream configuration sections. These
point to the Odoo service, which is listening on ports 8069 and 8072 by default. The
8069 port serves the web client and RPC requests, and 8072 serves the long polling
requests used by instant messaging features.

Setting up an Nginx reverse proxy 495

The server configuration section defines what happens to the traffic received on the 80
default HTTP port. Here, it is redirected to upstream Odoo services with the proxy_
pass configuration directive. Any traffic for the /longpolling address is passed on to
the odoochat upstream, and the / remaining traffic is passed on to the odoo upstream.

A few proxy_set_header directives add information to the request header to let the
Odoo backend service know that it is being proxied.

Tip
For security reasons, it is important for Odoo to ensure that the proxy_
mode parameter is set to True. The reason for this is that with Nginx, all
requests hitting Odoo are coming from the Nginx server instead of the original
remote IP address. Setting the X-Forwarded-For header in the proxy and
enabling --proxy-mode allows Odoo to be aware of the original source of
the request. Note that enabling --proxy-mode without forcing the header
at the proxy level allows malicious clients to spoof their request address.

At the end of the configuration file, a couple of gzip-related directives can be found.
These enable the compression of some files, thereby improving performance.

Once edited and saved, the Nginx configuration can be verified for correctness with the
following command:

$ sudo nginx -t

nginx: the configuration file /etc/nginx/nginx.conf syntax is
ok

nginx: configuration file /etc/nginx/nginx.conf test is
successful

Now, the Nginx service can reload the new configuration, using one of the following
commands, depending on the init system used:

$ sudo /etc/init.d/nginx reload

$ sudo systemctl reload nginx # using systemd

$ sudo service nginx reload # on Ubuntu systems

This will have Nginx reload the configuration used without interrupting the service, as
would have happened if restart was used instead of reload.

To be properly secured, Odoo should be accessed through HTTPS. The next section will
address this.

496 Deploying and Maintaining Production Instances

Configuring and enforcing HTTPS
Web traffic should not travel through the internet in plain text. When exposing the Odoo
server on a network, HTTPS should be used to encrypt the traffic.

In some cases, it might be acceptable to use a self-signed certificate. Keep in mind that
using a self-signed certificate provides limited security. While it allows for traffic to be
encrypted, it has some security limitations, such as not being able to prevent man-in-the-
middle attacks, or not being able to present security warnings on recent web browsers.

A more robust solution is to use a certificate signed by a recognized authority. This is
particularly important when running e-commerce websites. Another option is to use a
Let's Encrypt certificate, and the Certbot program automates getting SSL certificates for
it. See https://certbot.eff.org/instructions to learn more.

Next, we will see how to create a self-signed certificate, in case this is the preferred choice.

Creating a self-signed SSL certificate
A certificate needs to be installed on Nginx to enable SSL. We can either have one
provided by a certificate authority or generate a self-signed one.

To create a self-signed certificate, use these commands:

$ sudo mkdir /etc/ssl/nginx && cd /etc/ssl/nginx

$ sudo openssl req -x509 -newkey rsa:2048 \

-keyout server.key -out server.crt -days 365 -nodes

$ sudo chmod a-wx * # make files read only

$ sudo chown www-data:root * # access only to www-data group

The preceding code creates an /etc/ssl/nginx directory and a passwordless SSL
certificate. When running the openssl command, the user will be asked for some
additional information, and then a certificate and key files will be generated. Finally, the
ownership of these files is given to the www-data user, which is used to run the web server.

With an SSL certificate ready to be used, the next step is to install it on the Nginx service.

Configuring HTTPS access on Nginx
To enforce HTTPS, an SSL certificate is needed. The Nginx service will use it to encrypt
the traffic between the server and the web browser.

https://certbot.eff.org/instructions

Configuring and enforcing HTTPS 497

For this, the Odoo Nginx configuration file needs to be revisited. Edit it to replace the
server directive with the following:

server {

 listen 80;

 rewrite ^(.*) https://$host$1 permanent;

}

With this change, requests for the http:// address are converted into https://
equivalent addresses, ensuring that the non-secure transport is not used by accident.

The HTTPS service still needs to be configured. This can be done by adding the following
server directive to the configuration:

odoo server

upstream odoo {

 server 127.0.0.1:8069;

}

upstream odoochat {

 server 127.0.0.1:8072;

}

http -> https

server {

 listen 80;

 server_name odoo.mycompany.com;

 rewrite ^(.*) https://$host$1 permanent;

}

server {

 listen 443;

 server_name odoo.mycompany.com;

 proxy_read_timeout 720s;

 proxy_connect_timeout 720s;

 proxy_send_timeout 720s;

 # Add Headers for odoo proxy mode

 proxy_set_header X-Forwarded-Host $host;

498 Deploying and Maintaining Production Instances

 proxy_set_header X-Forwarded-For $proxy_add_x_for

 warded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_set_header X-Real-IP $remote_addr;

 # SSL parameters

 ssl on;

 ssl_certificate /etc/ssl/nginx/server.crt;

 ssl_certificate_key /etc/ssl/nginx/server.key;

 ssl_session_timeout 30m;

 ssl_protocols TLSv1.2;

 ssl_ciphers ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-

 AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-

 RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-

 POLY1305:ECDHE-RSA-CHACHA20-POLY1305:DHE-RSA-AES128-

 GCM-SHA256:DHE-RSA-AES256-GCM-SHA384;

 ssl_prefer_server_ciphers off;

 # log

 access_log /var/log/nginx/odoo.access.log;

 error_log /var/log/nginx/odoo.error.log;

 # Redirect longpoll requests to odoo longpolling port

 location /longpolling {

 proxy_pass http://odoochat;

 }

 # Redirect requests to odoo backend server

 location / {

 proxy_redirect off;

 proxy_pass http://odoo;

 }

 # common gzip

 gzip_types text/css text/scss text/plain text/xml

Configuring and enforcing HTTPS 499

 application/xml application/json application/javascript;

 gzip on;

}

This additional server directive listens to the HTTPS port and uses the certificate files at
/etc/ssl/nginx/ to encrypt the traffic.

Note
The Nginx configuration proposed here is based on the official documentation
found at https://www.odoo.com/documentation/15.0/
administration/install/deploy.html#https.

Once this configuration is reloaded, Odoo should work through HTTPS only, as shown in
the following commands:

$ sudo nginx -t

nginx: the configuration file /etc/nginx/nginx.conf syntax is
ok

nginx: configuration file /etc/nginx/nginx.conf test is
successful

$ sudo service nginx reload # or: sudo systemctl reload nginx

* Reloading nginx configuration nginx

...done.

$ curl -k https://localhost

Encrypting the web traffic is not the only thing Nginx can do for us. It can also help to
reduce the load on the Odoo upstream service. Let's look at this in detail in the next section.

Caching static content
Nginx can cache the static files served – this means that later requests for the cached files are
served directly from Nginx and don't need to be requested by the upstream Odoo service.

This not only improves response time but also improves the Odoo service capacity to
serve more users, as it is now focused on responding to dynamic requests.

To enable static content caching, add the following section to the Nginx configuration file
after the # comming gzip directives:

 # cache static data

 location ~* /web/static/ {

 proxy_cache_valid 200 60m;

https://www.odoo.com/documentation/15.0/administration/install/deploy.html#https
https://www.odoo.com/documentation/15.0/administration/install/deploy.html#https

500 Deploying and Maintaining Production Instances

 proxy_buffering on;

 expires 864000;

 proxy_pass http://odoo;

 }

With this configuration, static data is cached for 60 minutes. Odoo static content is
defined as any file served from the /web/static path.

At this point, the server should be fully functional, with Nginx handling requests through
HTTPS and then handing them over to the Odoo service for processing.

The Odoo service will require maintenance and updates, so the next section discusses how
to do this.

Maintaining the Odoo service and modules
Once the Odoo server is up and running, it is expected for some maintenance to be
needed – for example, installing or updating modules.

These actions involve some risk for the production system, and it is best to test them in a
staging environment before applying in production. Let's start with a basic recipe to create
a staging environment.

Creating a staging environment
The staging environment should be a copy of the production system and ideally should
have its own dedicated server.

A simplification, which is safe enough for most cases, is to have the staging environment
in the same server as the production system.

To create a copy of the odoo-prod production database as the odoo-stage database,
use the following commands:

$ dropdb odoo-stage

$ createdb --owner=odoo odoo-stage

$ pg_dump odoo-prod | psql -d odoo-stage

$ sudo su - odoo

$ cd ~/.local/share/Odoo/filestore/

$ cp -r odoo-prod odoo-stage

$ exit

Maintaining the Odoo service and modules 501

Note that some configurations are copied over, such as the connections to email servers,
and you may want to have additional commands disabling them. The specific actions
needed to do this depend on the database setup, but it's likely they can be automated by
a script. For this, it is good to know that the psql command can be used to run SQL
directly from the command line, for example, psql -d odoo-stage -c "<SQL
command>".

Tip
A database copy can be made in a much faster way using the following
command:

$ createdb --owner=odoo --template=odoo-prod odoo-
stage.

The caveat here is that in order for it to run, there can't be any open
connections to the odoo-prod database, so the Odoo production server
needs to be stopped before the command can be used.

Now that we have a copy of the production database for staging, the next step is to create
a copy of the source to be used. This can be in a subdirectory called /opt/odoo/stage,
for example.

The following shell commands copy the relevant files and create the staging environment:

$ sudo su - odoo

$ mkdir /opt/odoo/stage

$ cp -r /opt/odoo/odoo15/ /opt/odoo/stage/

$ cp -r /opt/odoo/library/ /opt/odoo/stage/ # custom code

$ python3 -m venv /opt/odoo/env-stage

$ source /opt/odoo/env-stage/bin/activate

(env-stage) $ pip install -r \

/opt/odoo/stage/odoo15/requirements.txt

(env-stage) $ pip install -e /opt/odoo/stage/odoo15

(env-stage) $ exit

Finally, a specific Odoo configuration file should be prepared for the staging environment,
as the path to the files used is different. The HTTP ports used should also be changed so
that the staging environment can run at the same time as the main production service.

This staging environment can now be used for testing purposes. So, the next section
describes how a production update would be applied.

502 Deploying and Maintaining Production Instances

Updating Odoo source code
Odoo and custom module code will usually have versions managed through Git.

To get the latest Odoo source code from the GitHub repository, use the git pull
command. Before doing that, the git tag command can be used to create a tag for the
current commit being used so that it's easier to revert the code update, as follows:

$ sudo su - odoo

$ cd /opt/odoo/odoo15

$ git tag --force 15-last-prod

$ git pull

$ exit

For code changes to take effect, the Odoo service should be restarted. For data file changes
to take effect, an upgrade to the modules is needed.

Tip
As a general rule, changes to Odoo stable versions are considered code fixes,
and it's therefore not often worth the risk of performing module upgrades. If
you need to perform a module upgrade, however, this can be achieved using
the -u <module> additional option (or -u base), which upgrades all
modules.

We can test the actions using the staging database before applying them in the production
database, as follows:

$ source /opt/odoo/env15/bin/activate

(env15) $ odoo -c /etc/odoo/odoo.conf -d odoo-stage \

--http-port=8080 -u library # modules to updgrade

(env15) $ exit

This Odoo staging server was configured to listen on port 8080. We can navigate there
with our web browser to check whether the upgraded code works correctly.

Summary 503

If something goes wrong, we can revert the code to an earlier version with the following
commands:

$ sudo su - odoo

$ cd /opt/odoo/odoo15

$ git checkout 15-last-prod

$ exit

If everything works as expected, it should be safe to perform an upgrade on the
production service, which is usually done by restarting it. If you want to perform an actual
module upgrade, the suggested approach is to stop the server, run the upgrade, and then
restart the service, as follows:

$ sudo service odoo stop

$ sudo su -c "/opt/odoo/env15/bin/odoo -c /etc/odoo/odoo.conf"
\

" -u base --stop-after-init" odoo

$ sudo service odoo start

Making a backup of the database before running an upgrade is also advised.

In this section, you learned how to create a staging environment alongside the main Odoo
environment to be used for testing. Updates to Odoo code or to custom modules can be
tried on the staging environment before applying them in the production system. This
allows us to identify and correct any issues you might find with the upgrades ahead of time.

Summary
In this chapter, we learned about the additional steps required for setting up and running
Odoo on a Debian-based production server. We looked at the most important settings in
the configuration file, and we learned how to take advantage of the multiprocessing mode.

For improved security and scalability, we also learned how to use Nginx as a reverse proxy
in front of Odoo server processes and how to configure it to use HTTPS-encrypted traffic.

Finally, some advice was provided on how to create a staging environment and perform
updates to Odoo code or custom modules.

This covers the essentials of what's needed to run an Odoo server and provide a
reasonably stable and secure service to your users. We can now use it to host our library
management system!

504 Deploying and Maintaining Production Instances

Further reading
To learn more about Odoo, you should take a look at the official documentation at
https://www.odoo.com/documentation. Some topics are covered in more detail
there, and you'll find topics not covered in this book.

There are also other published books on Odoo that you might find useful. Packt
Publishing has a few in its catalog, and in particular, Odoo Development Cookbook
provides more advanced material on topics not discussed in this book. At the time of
writing, the last edition available was for Odoo 14, which is available at https://
www.packtpub.com/product/odoo-14-development-cookbook-fourth-
edition/9781800200319.

Finally, Odoo is an open source product with a vibrant community. Getting involved,
asking questions, and contributing is a great way not only to learn but also to build a
business network. With this in mind, we should also mention the Odoo Community
Association (OCA), which promotes collaboration and quality open source code. You
can learn more about it at https://odoo-community.org/ or https://github.
com/OCA.

Enjoy your Odoo journey!

https://www.odoo.com/documentation
https://www.packtpub.com/product/odoo-14-development-cookbook-fourth-edition/9781800200319
https://www.packtpub.com/product/odoo-14-development-cookbook-fourth-edition/9781800200319
https://www.packtpub.com/product/odoo-14-development-cookbook-fourth-edition/9781800200319
https://odoo-community.org/
https://github.com/OCA
https://github.com/OCA

Index

A
abstract models 175, 178
access control lists (ACLs) 32, 98
access control security

adding 98-100
configuring 32

access security
about 116, 117
configuring, for portal users 446-448
setting up 97
testing 92

action buttons
adding 106, 107

Action context menu
options, adding to 330, 331

actions
creating 31
using, in kanban view elements 391

actions, in XML data files
model methods, calling 171
records, deleting 170, 171
using 170

activities 276
activity management features 273, 274

activity view
exploring 364

additional modules
installing 63

addon module
about 7, 69, 70
creating 69

addons directory 70
addons path

about 70
preparing 70, 71

add-ons path, Odoo
configuring 64

Affero General Public License
(AGPL-3) 79

all-in-one installer
for installing Odoo on Windows 12

API methods 312-314
application programming

interface (API) 9, 475
apps

about 69
creating 84

argparse
reference link 317

506 Index

argument values
extracting, from route string 442, 443

arrow 466
assets

adding, before Odoo 15 405
Auditlog

reference 474
automated tests

adding 88, 89
automatic field names 187

B
backend 433
backend view layer

implementing 102
basic input/output system (BIOS) 12
bidirectional arrow 466
binary field widgets 346
book catalog 68
book checkout module

about 247
creating 248-251
data model, preparing 247

book form view 108
Bootstrap

URL 417
business document form views 106
business document views

using 333, 334
business logic

adding 110-112
testing 91
triggering, ways 251

business logic layer
implementing 110

Business Logic tier 4, 5

business reports
creating 410
paper format, setting 415, 416
QWeb report template, using for

per-record documents 412, 413
QWeb report template, using for

record listings 413, 414
report action, adding 410-412
report layout, selecting 414, 415

buttons
attributes 348
smart buttons 349-352
using 348

Byobu
reference link 488

C
calendar view

attributes 365
exploring 365

Cascading Style Sheets (CSS) 80
CentOS 479
Certbot instructions

reference link 496
channel 276
classic inheritance 129
CLI application 306, 307
client app user interface

implementing 316-319
client app XML-RPC interface

implementing 314-316
client machine

Python, setting up on 307, 308
columns

grouping, by adding progress
bar 381, 382

Index 507

command line
Odoo service, checking from 491

command-line interface (CLI) 306
Community Edition (CE) 84
community modules

installing 63
reference link 63
searching 63

company parameters
about 472, 473

computed fields 197-199
search operation 199-201
write operation 199-201

computed writable fields 269
configuration file

setting up 484-488
configuration properties 472, 473
contacts data model

about 464, 466
bank 464
bank account 464
country 465
country group 465
country state 465
currencies 465
industry 464

Content Management System (CMS) 433
controller components 9
controller method 442
Coordinated Universal Time

(UTC) format 225
copy() model method 230
create() method 230, 315
create, read, update, and delete

(CRUD) operations 5, 467
CSS assets

adding 404

CSV data files
exporting 156
importing 156
related records 160-162

custom field
adding, to model 18

custom report data
preparing 427, 428

custom reports
about 425
creating 425-427

D
data

accessing, in recordsets 223
existing data, modifying 140, 141
exporting 156-158
extending 138
importing 159, 160
querying, with domains 215
querying, with recordsets 215

database creation form 53
database structure models

about 468
attachment 469
decimal accuracy 469
external identifiers 469
field 469
model 469
sequence 469

database transactions
controlling 241

data export methods 269
data import methods 269
data manipulation language (DML) 242

508 Index

data model
creating 93-97

data model patterns
exploring 254

Data tier 4, 5
date fields

working with 231
date objects

adding 232
converting, to text

representations 233, 234
subtracting 232

datetime values
accessing 225

date values
accessing 225

debugging 297
debugging session 299, 300
decorators

effect, on self recordset 253, 254
for computed fields 253
for validation methods 253

dedicated system user
preparing 480, 481

default filters
enabling, on views 42

delegation inheritance
about 129
models embedding with 129-133

demonstration data 163, 164
description

adding 80
developer mode

enabling 16, 17
using, with assets 18

developer tools
enabling 15

diagram view type
reference link 363

dictionaries
using, to dynamically set attributes 401

discussions 276
Docker containers

for installing Odoo 12-14
Docker Desktop 12
Docker Toolbox

URL 13
document

followers, adding to 278
header title, adding 339, 340

document-centered workflows
stages, using for 257-261
states, using for 257

document sheet
designing 338

domain 217
domain condition

field element 217
operator element 218, 219
value element 219

domain expression
about 217, 220
composing, with multiple

conditions 220, 221
dot notation 131, 419
dot operator 131
dynamic attributes

using 353
dynamic view elements

adding 352

Index 509

E
endpoint 436
endpoint controller

adding 113, 114
Enterprise Edition (EE) 84
exceptions

raising 286, 287
testing 293

execution environment
about 212
attributes 212, 213
context 213, 214

expressions
used, for setting values 167

extensibility 142
Extensible Markup Language

(XML) 77, 466
external identifier (XML ID)

about 152
finding 155, 156
working 152-154

F
fields

about 92
adding, to form view 21-23
adding, to model 19, 20
attributes 343-344
automatic field names 187
computed fields 197-199
creating 180
default values, setting 186
labels, modifying 344
related fields 201, 202
relation fields 346, 347
reserved field names 187, 188

types 180-183
using 343

field values
setting, directly 167
setting, with expressions 167

field widgets
binary field widgets 346
numeric field widgets 345
reference link 421
relation field widgets 346
selecting 345
selection field widgets 346
text field widgets 345
using 420

flexible relationships
Reference fields, using 196

Focal Fossa 479
followers

about 276
adding, to document 278

foreign key (FK) 95, 466
forms

content, organizing with groups 340-342
organizing, with groups 107

form views
business document views 333, 334
creating 40, 104, 105
document sheet, designing 338
header section, adding 334
structure, exploring 332

frontend 433
frontend web page

creating 435
CSS assets, adding 440, 441
JavaScript assets, adding 440, 441
QWeb template, adding 438-440
web controller, adding 436-438

510 Index

G
Git 482
Global Interpreter Lock (GIL) 489
GNU 488
GNU licenses

reference link 79
graph view

exploring 367, 368
Group By feature 374
groups

about 32
used, for organizing form

content 340-342
using, to organize forms 107

H
header model

using 254-256
header section, form views

header buttons, adding 334, 335
status bar pipeline, adding 336

hierarchical relationships 194, 195
host

setting up, for Odoo server 44
host system

preparing 479
HTTPS

access, configuring on Nginx 496-499
configuring 496
enforcing 496

HyperText Markup Language
(HTML) 80, 471

Hyper-V 13

I
icon

adding 81
identifiers (IDs) 464
information repository models

about 204
examples 205

inheritance mechanisms
about 129
delegation inheritance 129
mixin classes 129
prototype inheritance 129

in-memory ORM 226
internal error 144
International Organization for

Standardization (ISO) code 465
ipdb

about 300
reference link 296

J
JavaScript assets

adding 404

K
kanban 372
kanban boards

about 372
columns 379
example 372, 373
supporting 373, 374

Index 511

kanban cards
activity widget, adding 390
color indicator, adding 388, 389
content fields, adding 385
designing 383
drop-down options menu,

adding 386-388
layout, organizing 383-385
priority widget, adding 389
title, adding 385

kanban states 375, 376
kanban state widget

adding 390
kanban view elements

actions, using in 391
kanban views

attributes 380
designing 377
elements 380
extending 402, 403

keyword arguments
about 182
reference link 182

L
language translation

enabling, in reports 423-425
Lesser General Public License

(LGPL-3) 79
Library app

books, adding 121
extending 120
features 120
improving 174
Library Members, adding 121

Library Members model 130

library portal learning project 434, 435
library project

overview 68
license

selecting 79
lines model

using 254-256
lists

using, to dynamically set attributes 401
list views

adding 109
attributes 356
column totals, adding for

numeric fields 357
creating 39
exploring 354
header section, adding 354, 355
line decoration, using 355, 356

log messages
using 294, 295

long-term support (LTS) 45, 479
low-level SQL 240

M
Mail Thread abstract model 473
manifest file

about 70
creating 74-76

many-to-many relationships 189-193
many-to-one relationships

about 189, 190
field values, setting 168

menu items
adding 102-104, 326
attributes 327
creating 30

512 Index

messages
about 276
logging 301
posting 278
printing 301
subtypes 276, 277

messaging data models
about 473, 475
activities 474
activity type 474
followers 474
message 473
message subtype 473
tracking values 473

messaging features 273, 274
methods

for supporting user interface 263, 264
minimal viable kanban view

creating 378, 379
mixin classes

about 129, 134
model features, reusing with 134

model constraints
about 202
Python model constraints 203, 204
SQL model constraints 202, 203

model definition-related business
logic, instances

automatic computations 251
data validation rules 251
default values 251

model event-related business logic 252
model extension

field, adding to Form view 123, 124
new field, adding 122
new field, adding with in-place

model extension 122, 123

model extension, with classic
in-place extension

about 125
existing fields, modifying

incrementally 126, 127
Python methods, extending 127-129

model layer
implementing 92

model methods
calling 171

models
about 26, 92
abstract models 178
attributes 175, 176
copying, with prototype

inheritance 133, 134
creating 26-29, 175
custom field, adding to 18
embedding, with delegation

inheritance 129-133
existing models, inspecting 178-180
features, reusing with mixin classes 134
field, adding to 19, 20
message chatter and activity

mixins, adding 135-137
Python classes 177
stage workflow support,

adding to 262, 263
transient models 178

models, relationships
hierarchical relationships 194, 195
many-to-many 189-193
many-to-one 189, 190
one-to-many 189, 191

module
installing 81
maintaining 500
upgrading 82, 83

Index 513

module category
setting 76-78

module data
adding 162

module directory
creating 72-74

multiprocessing workers 489

N
NACE (Nomenclature of

Economic Activities) 464
Nginx

configuration, reference link 499
HTTPS access, configuring on 496, 499

Nginx reverse proxy
setting up 492-495

non-app module addon 69
note 276
noupdate data attribute 165, 166
numeric field widgets 345

O
Object Relational Mapping

(ORM) engine 9
object-style value assignments

using 226, 228
OCA code repositories

reference link 7
Odoo

about 6
add-ons path, configuring 64
Community Edition (CE) 6
community modules 63
configuring 484
database, creating from

command line 54, 55

database, creating from web client 52, 53
Enterprise Edition (EE) 6
installing, from source 46-50
installing, from source code 481
installing, in workstation 11
installing, with Docker containers 12-14
PostgreSQL database, installing 46, 47
product versions 7
reference link, official documentation 46
running 51
setting up, as system service 489, 490
system dependencies, installing 47

Odoo Apps
reference link 63
URL 7

Odoo architecture
about 8
Data tier 8
Logic tier 9
Presentation tier 9

Odoo base models
about 204
information repository models 204
resources models 205

Odoo CE
reference link 6

Odoo commands
reference link 65, 66

Odoo Community Association (OCA)
about 63
URL 7, 93

Odoo databases
managing 55-57

Odoo Experience conference 7
Odoo external API

connecting, with XML-RPC 308, 309
exploring 308

514 Index

Odoo, installing on Linux
with pre-packaged installer 12

Odoo, installing on Windows
with all-in-one installer 12

Odoo licenses
reference link 79

Odoo packages
download link 11

OdooRPC library
using 319-321

Odoo SA 6
Odoo SaaS trial database

using 10
Odoo server

host, setting up 44, 45
reference link, official

documentation 44
Odoo server API 10
Odoo server configuration options

accessible databases list, filtering 59, 60
configuring 57
listening port, changing 58, 59
server configuration files 57, 58
server log messages, managing 60-62

Odoo service
checking, from command line 491
maintaining 500

Odoo source code
downloading 482
updating 502, 503

Odoo Studio 18
oldname field attribute 185
onchange events

using 352
onchange mechanism

about 269
methods 270, 271
with computed writable fields 272, 273

onchange user interface logic
adding 269

one-to-many relationships 189, 191
on to-many fields

searching 220
open core business model 6
ORM, built-in methods

about 264
considerations, for extending create

() and write() methods 268, 269
example, of extending create() 265, 266
example, of extending write() 266-268
methods, for writing model

data 264, 265
ORM method decorators

for recordsets 252
ORM models 9

P
partner 276
pdb

about 297
working 298

pivot view
attributes 367
exploring 366

Polish notation (PN) 220
Portable Desktop Format (PDF) 471
portal breadcrumb

adding 457, 458
portal document detail page

adding 454-457
portal document list page

adding 450-454
portal document type

adding, to main list 449, 450

Index 515

portal features
about 433, 445
access security, configuring for

portal users 446-448
adding 446

portal tasks 453
positional arguments 182
PostgreSQL 479
PostgreSQL constraint

reference link 203
PostgreSQL database

installing 46, 47
URL 56

PostgreSQL server 8
pre-packaged installer

used, for installing Odoo on Linux 12
Presentation tier 4, 5
print() function 301
processes

inspecting 302
killing 302

progress bar
about 381
adding, to group columns 381, 382

property fields 472
prototype inheritance

about 129
models, copying with 133, 134

psql documentation page
URL 56

pudb
about 300
reference link 296

Python
setting up, on client machine 307, 308

Python debugger
about 297, 298
commands, reference link 65

Python dependencies
installing 483, 484

Python editable install 51
Python model constraints 203, 204
Python Package Index (PyPI) 483

Q
QWeb 9
QWeb JavaScript evaluation

context 392, 393
QWeb report template

adding 428-430
using, for per-record

documents 412, 413
using, for record listings 413, 414

QWeb template
about 435, 438
adding 114, 115, 438-440
extending 144-146
language, exploring 391

R
raw SQL

executing 241, 242
read API methods

using, to query Odoo data 311, 312
record data

accessing 223, 224
records

creating 230
defining, in XML 167
deleting 170, 171, 230
grouping, by fields 222
writing on 226

recordset execution context
modifying 214

516 Index

recordset execution environment
modifying 214

recordsets
accumulation 238, 239
comparisons 240
composition 237, 238
creating 216
data, accessing in 223
data, querying 215
functions 236
working with 236

Red Hat Enterprise Linux (RHEL) 479
Reference fields

about 189
using, for flexible relationships 196

regular models 175
related fields 201, 202
relational fields

accessing 224
relation fields 346, 347
remote procedure calls (RPCs) 9, 487
report action

about 410
adding 410-412

report content
adding 418-420
designing 417
field widgets, using 420, 421
images, rendering 421
running totals, calculating 423
totals, calculating 422

report rendering context 417
reports

language translation, enabling 423-425
request object

attributes 443, 444
using 443, 444

reserved field names 187, 188
resources models 205
response object

using 444
reStructuredText (RST) format

about 80
reference link 80

route decorators
arguments 442

route path formatting
reference link 443

routes
declaring 442

route strings
argument values, extracting

from 442, 443
routing 436
row-level access rules 100, 101

S
search API methods

using, to query Odoo data 311, 312
search views

<field> element 358, 359
<filter> element 359, 360
adding 110
creating 41
exploring 357
search panel, adding 361, 362

security access control lists 34
security group

about 33
adding 85-88
assigning, to users 34, 36

security record rules 36, 37

Index 517

security-related information repository
about 467
access group 467
model access 467
rule 468

selection field widgets 346
self-signed SSL certificate

creating 496
server development

options 296, 297
options, using 64, 65

shell command
using 210, 211

Single Euro Payments Area (SEPA) 465
singleton 223
slice notation 237
smart buttons

attributes 352
using 349-351

source code
Odoo, installing from 481

special domain conditions 221
SQL model constraints 202, 203
stages

about 257, 337
using, for document-centered

workflows 257-261
stage workflow support

adding, to models 262, 263
staging environment

creating 500, 501
states

about 257
using 337
using, for document-centered

workflows 257
states field attribute 185

static content
caching 499

string substitution, of dynamic attributes
with t-attf- directive 395

sudoer 479
superuser account 38
System configuration

reference link 489
system dependencies

installing 479, 480
systemd service

creating 490, 491

T
tabbed notebooks

adding 342
t-att- attribute

using, for expressions calculated
by dynamic attributes 396

t-attf- directive
using, for string substitution of

dynamic attributes 395
t-call

using, to call templates 399-401
using, to reuse templates 399-401

test cases
adding 90
writing 291-293

tests
running 91, 290
setting up 290, 291

text field widgets 345
text-represented dates and times

converting 234, 235
t-foreach for loops

using 396-398

518 Index

t-if directive
using, to apply conditions 398

time fields
working with 231

time objects
converting, to text

representations 233, 234
To-do Item model

fields 5
to-do list Odoo app 4
to-many relationship fields

values, setting on 168, 169
to-many write commands 169
top menu item

adding 84, 85
t-out

used, for rendering values 394
transactions 240
transient models 175, 178
t-set

used, for assigning values
to variables 394

tuple 430
TurnKey Linux

URL 45

U
Ubuntu 479
Ubuntu Server ISO images

download link 45
UI-related information repository

about 470, 471
action 471
menu 470
reports 471
server action 471

views 470
window action 471

Uniform Resource Locator (URL) 75, 472
unit tests

adding 288, 289
writing 288

unlink() method 230, 316
user avatar widgets

adding 391
users

security groups, assigning to 34, 36
users and companies data model

about 466, 467
access group 466
company 466
user 466

V
values

assigning to variables, with t-set 394
rendering, with t-out 394
setting, on many-to-one

relationship fields 168
setting, on to-many relationship

fields 168, 169
view fields 343
views

creating 38
default filters, enabling on 42
extending 138
form view 24
kanban view 24
list view 24
search view 25
types 24-26

Index 519

view types
about 362
activity 362, 364
calendar 362, 365
cohort 363
dashboard 363
Gantt 363
graph 362, 367, 368
grid 363
gweb 362
kanban 362
list 354
map 363
pivot 362, 366
search 357

VirtualBox
URL 45

virtual environment 483

W
wdb

reference link 296
web controller

about 435, 436, 442
adding, to frontend web page 436-438

web controllers
about 113, 142
extending 142-144

web pages
extending 142

website features 433
website framework 9
website UI

implementing 112
window actions

about 32, 328, 329
fields 328, 329

Windows Subsystem for Linux 2 (WSL 2)
installing 45
reference link 45

wizard
about 279
access security 280, 281
business logic 284-286
creating 279

wizard form 281-283
wizard model 279, 280
wkhtmltopdf (Webkit HTML to PDF)

about 408
installing 409

work items 372
workstation

Odoo, installing in 11
write() method 316

using 228, 229

X
XML

records, defining in 167
XML data files

using 164, 165
XML extension points

selecting, XPath used 140
XML ID 85
XML nodes

moving, to different location 139
XML-RPC

using, to connect to Odoo
external API 308, 309

using, to run server methods 310
XPath expressions 140
XPath syntax

reference link 140

520 Index

Y
YAML Ain't Markup Language (YAML)

about 89
URL 162

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
http://customercare@packtpub.com
http://www.packt.com

522 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Odoo 14 Development Cookbook - Fourth Edition
Parth Gajjar, Alexandre Fayolle, Holger Brunn, Daniel Reis

ISBN: 9781800200319

• Build beautiful websites with Odoo CMS using dynamic building blocks
• Get to grips with advanced concepts such as caching, prefetching, debugging
• Modify backend JavaScript components and POS applications with the new OWL

framework
• Connect and access any object in Odoo via Remote Procedure Calls (RPC)
• Manage, deploy, and test an Odoo instance with Odoo.sh
• Configure IoT Box to add and upgrade Point of Sale (POS) hardware
• Find out how to implement in-app purchase services

https://www.packtpub.com/product/odoo-14-development-cookbook-fourth-edition/9781800200319

Other Books You May Enjoy 523

Designing Professional Websites with Odoo Website Builder

Sainu Nannat

ISBN: 9781801078122

• Find out how to implement structure blocks while developing a website

• Work with dynamic content blocks and inner content blocks in the Odoo website
builder

• Use an HTML, CSS, or JS editor in the Odoo website builder to customize
applications

• Create and design a blog with the Odoo website builder

• Build a fully functional e-commerce website and a discussion forum using the Odoo
website builder

• Track visitors on the website and understand the live chat tool and its functionality

https://packt.link/9781801078122

524

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Odoo 15 Development Essentials, we'd love to hear your thoughts! If
you purchased the book from Amazon, please click here to go straight to
the Amazon review page for this book and share your feedback or leave a review on
the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1800200064
https://packt.link/r/1800200064

	Title Page
	Copyrights & Credits
	Foreword
	Contributors
	Table of Contents
	Preface
	Section 1:
Introduction to Odoo Development
	Chapter 1: Quick Start Using the Developer Mode
	Technical requirements
	Introducing the to-do list project
	Understanding basic Odoo concepts
	About Odoo and the Odoo community
	Odoo product versions
	The Odoo architecture

	Using an Odoo SaaS trial database
	Installing Odoo in your workstation
	Installing on Windows using the all-in-one installer
	Installing on Linux using a pre-packaged installer
	Installing Odoo using Docker containers

	Enabling the developer tools
	Enabling the developer mode
	Using the developer mode with assets
	About Odoo Studio

	Adding a custom field to a model
	Adding a field to a model
	Adding a field to a form view
	Understanding view types

	Creating a new model
	Creating menu items and actions
	Configuring access control security
	Security groups
	Security access control lists
	Assigning security groups to users
	Security record rules
	Understanding the superuser account

	Creating views
	Creating a list view
	Creating a form view
	Creating search views
	Enabling default filters on views

	Summary

	Chapter 2: Preparing the Development Environment
	Technical requirements
	Setting up a host for the Odoo server
	Installing the Windows Subsystem for Linux

	Installing Odoo from source
	Installing the PostgreSQL database
	Installing the Odoo system dependencies
	Installing Odoo from source
	Running Odoo
	Creating a new database from the web client
	Creating a new database from the command line

	Managing Odoo databases
	Configuring the Odoo server options
	Odoo server configuration files
	Changing the listening port
	Filtering the list of accessible databases
	Managing server log messages

	Finding and installing additional modules
	Finding community modules
	Configuring the add-ons path

	Using the server development options
	Odoo commands quick reference
	Summary

	Chapter 3: Your First Odoo Application
	Technical requirements
	Overview of the library project
	Step 1 – Creating a new addon module
	Preparing the addons path
	Creating a module directory
	Creating a manifest file
	Setting the module category
	Choosing a license
	Adding a description
	Adding an icon
	Installing a new module
	Upgrading modules

	Step 2 – Creating a new application
	Adding a top menu item
	Adding security groups

	Step 3 – Adding automated tests
	Adding test cases
	Running tests
	Testing business logic
	Testing access security

	Step 4 – Implementing the model layer
	Creating a data model

	Step 5 – Setting up access security
	Adding access control security
	Row-level access rules

	Step 6 – Implementing the backend view layer
	Adding menu items
	Creating a form view
	Business document form views
	Adding action buttons
	Using groups to organize forms
	The complete form view
	Adding list and search views

	Step 7 – Implementing the business logic layer
	Adding business logic

	Step 8 – Implementing the website UI
	Adding the endpoint controller
	Adding a QWeb template

	Quick reference
	Access security

	Summary

	Chapter 4: Extending Modules
	Technical requirements
	Learning project – extending the Library app
	Books
	Members

	Adding a new field to an existing model
	Adding new fields with the in-place model extension
	Adding a field to the Form view

	Extending models using classic in-place extension
	Incrementally modifying existing fields
	Extending Python methods to add features to the business logic

	More model inheritance mechanisms
	Embedding models using delegation inheritance
	Copying models with prototype inheritance
	Reusing model features using mixin classes
	Adding message chatter and activities to a model

	Extending views and data
	Extending views
	Moving XML nodes to a different location
	Using XPath to select XML extension points
	Modifying existing data

	Extending web pages
	Extending the web controllers
	Extending QWeb templates

	Summary
	Further reading

	Section 2:
Models
	Chapter 5: Importing, Exporting, and Module Data
	Technical requirements
	Understanding the external identifier concept
	How external identifiers work
	Finding external identifiers

	Exporting and importing CSV data files
	Exporting data
	Importing data
	Related records in CSV data files

	Adding module data
	Demonstration data

	Using XML data files
	The noupdate data attribute
	Defining records in XML
	Shortcuts for frequently used models
	Using other actions in XML data files

	Summary
	Further reading

	Chapter 6: Models – Structuring the Application Data
	Technical requirements
	Learning project – improving the Library app
	Creating models
	Model attributes
	Models and Python classes
	Transient and abstract models
	Inspecting existing models

	Creating fields
	Basic field types
	Common field attributes
	Setting default values
	Automatic field names
	Reserved field names

	Relationships between models
	Many-to-one relationships
	One-to-many inverse relationships
	Many-to-many relationships
	Hierarchical relationships
	Flexible relationships using Reference fields

	Computed fields
	Searching and writing on computed fields
	Related fields

	Model constraints
	SQL model constraints
	Python model constraints

	Overview of the Odoo base models
	Summary
	Further reading

	Section 3:
Business Logic
	Chapter 7: Recordsets – Working with Model Data
	Technical requirements
	Using the shell command
	The execution environment
	Environment attributes
	The environment context
	Modifying the recordset execution environment and context

	Querying data with recordsets and domains
	Creating recordsets
	Domain expressions
	Grouping by fields and aggregate data

	Accessing data in recordsets
	Accessing individual record data
	Accessing relational fields
	Accessing date and time values

	Writing to records
	Using object-style value assignments
	Using the write() method
	Creating and deleting records

	Working with date and time fields
	Adding and subtracting time
	Converting date and time objects to text representations
	Converting text-represented dates and times

	Working with recordsets
	Recordset operations
	The composition of a recordset
	Recordset accumulation
	Recordset comparisons

	Transactions and low-level SQL
	Controlling database transactions
	Executing raw SQL

	Summary
	Further reading

	Chapter 8: Business Logic – Supporting Business Processes
	Technical requirements
	Learning project – the book checkout module
	Preparing the data model
	Creating the module

	Exploring ways to trigger business logic
	Understanding ORM method decorators for recordsets
	Decorators for computed fields and validation methods
	Decorators that affect the self recordset

	Exploring useful data model patterns
	Using header and lines models
	Using stages and states for document-centered workflows
	Adding stage workflow support to models
	Methods to support the user interface

	Using the ORM built-in methods
	Methods for writing model data
	Methods for data import and export

	Adding onchange user interface logic
	Classic onchange methods
	The new onchange, with computed writable fields

	The message and activity features
	Adding message and activity features
	Message and activity fields and models
	Message subtypes
	Posting messages
	Adding followers

	Creating a wizard
	The wizard model
	The wizard's access security
	The wizard form
	The wizard business logic

	Raising exceptions
	Writing unit tests
	Adding unit tests
	Running tests
	Setting up tests
	Writing test cases
	Testing exceptions

	Using log messages
	Learning about the available developer tools
	Server development options
	Debugging
	Inspecting and killing running processes

	Summary
	Further reading

	Chapter 9: External API – Integrating with Other Systems
	Technical requirements
	Introducing the learning project – a client app to catalog books
	Setting up Python on the client machine
	Exploring the Odoo external API
	Using XML-RPC to connect to the Odoo external API
	Using XML-RPC to run server methods
	Using the search and read API methods
	Calling other API methods

	Implementing the client app XML-RPC interface
	Implementing the client app user interface
	Using the OdooRPC library
	Summary
	Further reading

	Section 4:
Views
	Chapter 10: Backend Views – Designing
the User Interface
	Technical requirements
	Adding menu items
	Understanding window actions
	Adding options to the Action context menu
	Exploring the form view structure
	Using business document views
	Adding a header section
	Designing the document sheet
	Adding a header title
	Organizing the form content using groups
	Adding tabbed notebooks

	Using fields
	Modifying field labels
	Choosing field widgets
	Relation fields

	Using buttons
	Using smart buttons

	Adding dynamic view elements
	Using onchange events
	Using dynamic attributes

	Exploring list views
	Adding a list view header section
	Using line decoration
	Other list view attributes
	Adding column totals

	Exploring search views
	Understanding the <field> element
	Understanding the <filter> element
	Adding a search panel

	Understanding the other available view types
	Exploring the activity view
	Exploring the calendar view
	Exploring the pivot view
	Exploring the graph view

	Summary
	Further reading

	Chapter 11: Kanban Views and Client-Side QWeb
	Technical requirements
	Introducing kanban boards
	Supporting kanban boards in Odoo
	Understanding kanban states

	Designing kanban views
	Creating a minimal viable kanban view
	Presenting kanban board columns
	Understanding kanban view attributes and elements
	Adding a progress bar to group columns

	Designing kanban cards
	Organizing the kanban card layout
	Adding a title and other content fields
	Adding the drop-down options menu
	Adding a kanban card color indicator
	Adding priority and activity widgets
	Adding kanban state and user avatar widgets
	Using actions in kanban view elements

	Exploring the QWeb template language
	Understanding the QWeb JavaScript evaluation context
	Using t-out to render values
	Using t-set to assign values to variables
	Using t-attf- for string substitution of dynamic attributes
	Using t-att- for expressions calculated by dynamic attributes
	Using t-foreach for loops
	Using t-if to apply conditions
	Using t-call to call and reuse templates
	Using dictionaries and lists to dynamically set attributes

	Extending kanban views
	Adding CSS and JavaScript assets
	Adding assets before Odoo 15

	Summary
	Further reading

	Chapter 12: Creating Printable PDF Reports with Server-Side QWeb
	Technical requirements
	Installing wkhtmltopdf
	Creating business reports
	Adding the report action
	Using a QWeb report template for per-record documents
	Using a QWeb report template for record listings
	Choosing a report layout
	Setting a paper format

	Designing report content
	Understanding the report rendering context
	Adding the report content
	Using field widgets
	Rendering images
	Calculating totals
	Calculating running totals
	Enabling language translation in reports

	Creating custom reports
	Preparing custom report data
	Adding the report template

	Further reading

	Chapter 13: Creating Web and Portal Frontend Features
	Technical requirements
	Introducing the library portal learning project
	Creating a frontend web page
	Adding a web controller
	Adding a QWeb template
	Adding CSS and JavaScript assets

	Understanding web controllers
	Declaring routes
	Extracting argument values from the route string
	Using the request object
	Using the response object

	Adding portal features
	Configuring access security for the portal users
	Adding a portal document type to the main list
	Adding a portal document list page
	Adding a portal document detail page
	Adding a portal breadcrumb

	Summary
	Further reading

	Section 5:
Deployment and Maintenance
	Chapter 14: Understanding Odoo Built-In Models
	Technical requirements
	Understanding the contacts data model
	Understanding the users and companies data model
	Understanding the security-related information repository
	Understanding the database structure models
	Understanding the UI-related information repository
	Understanding the configuration properties and company parameters
	Understanding messaging data models
	Summary

	Chapter 15: Deploying and Maintaining Production Instances
	Technical requirements
	Preparing the host system
	Installing the system dependencies
	Preparing a dedicated system user

	Installing Odoo from source code
	Downloading the Odoo source code
	Installing the Python dependencies

	Configuring Odoo
	Setting up the configuration file
	Understanding multiprocessing workers

	Setting up Odoo as a system service
	Creating a systemd service
	Checking the Odoo service from the command line

	Setting up an Nginx reverse proxy
	Configuring and enforcing HTTPS
	Creating a self-signed SSL certificate
	Configuring HTTPS access on Nginx
	Caching static content

	Maintaining the Odoo service and modules
	Creating a staging environment
	Updating Odoo source code

	Summary
	Further reading

	Index
	Other Books YouMay Enjoy

